2. История. Современное применение компенсаторов в приборах

Нивелир с компенсатором нельзя назвать последней разработкой – первый образец подобного геодезического оборудования был построен еще в 40-х годах прошлого века. Однако, в последующие годы данное оборудование прошло ни одну модификацию прежде чем превратиться в современный нивелир. При использовании механических нивелиров не возникает необходимости быстрого гашения колебаний, при использовании же автоматических нивелиров все происходит с точностью до наоборот. И справляться с этим помогает именно система гашения колебаний. В исправном нивелире зеркало и призма постоянно сохраняют горизонтальное положение, позволяющее обеспечивать высокое качество нивелирной съемки. При этом на прибор действует внешнее окружение: произвольные наклонения прибора (просевшие ножки, неаккуратно задетый штатив и т.д.), колебания почвы (если съемка проводится вблизи железных дорог, метро и др.), сильные порывы ветра и прочее. В каждом из этих случаев включается система гашения колебаний. Это позволяет не только обеспечить высокое качество измерения, но и ускорить процесс съемки – свободно подвешенное внутри аппарата зеркало при воздействии извне будет довольно долго колебаться до момента полной остановки, если не использовать компенсацию. Демпфер в данном случае может быть магнитным или воздушным, и выбор нивелира в первую очередь зависит от требований к съемке.

Появились автоматические нивелиры - появилась и потребность быстро гасить колебания маятниковой подвесной системы компенсатора. Колебания, которые необходимо гасить - это механические колебания призмы или зеркала между призмами - в зависимости от конструкции компенсатора.


Например, призма подвешивается в нивелирах 3Н3КЛ (рис. 5) производства УОМЗ, а зеркало - в нивелирах C410 производства фирмы SOKKIA (рис. 6).

Первый в мире нивелир с компенсатором был изготовлен в СССР в 1946 году.

К высокоточным нивелирам с компенсатором относятся такие нивелиры как Ni002, Ni007, HC2. Это удобные нивелиры. Они повышают производительность труда на 10-15% по равнению с нивелирами с уровнем и облегчают труд нивелировщика. Главная особенность нивелиров с компенсаторами заключается в том, что приведение визирной оси нивелира в горизонтальное положение производится не с помощью контактного уровня, а с помощью специального компенсатора. Этот компенсатор по существу работает в автоматическом режиме т. е. линия визирования на каждой станции как бы самоустанавливается в горизонтальное положение.

В наше время выпускается около 50 типов нивелиров с компенсаторами разных классов точности.

Нивелировщики – практики предпочтение отдают нивелирам с компенсаторами. Очень им нравится нивелир Ni002.


1 — клинообразное защитное стекло; 2 — сетка нитей;

3 — объектив нивелира с компенсатором; 4 — зеркало компенсатора;

5 — переключатель компенсатора; 6 — призма подсветки;

7 — жесткий индекс микрометра; 8 — объектив нивелира;

9 — шкала оптического микрометра; 10 — зеркало;

11 — зеркало установочного уровня; 12 —установочный уровень.

Чувствительным элементом нивелира с компенсатором Ni002 (рис. 8) является специальное двустороннее плоское зеркало, которое находится в подвешенном состоянии в виде маятника в сходящемся пучке лучей, демпфер — воздушный. Благодаря возможности вращения зеркала на 180° вокруг своей вертикальной оси исключаются влияние ошибки за недокомпенсацию в отсчетах по рейке при нескольких положениях зеркала. Кроме компенсатора этот нивелир имеет еще одно дополнительное удобство. Окуляр Ni002 выведен на верхнюю стенку инструмента и может вращаться по азимуту на 240°. Поэтому нивелировщик при наблюдении на переднюю и заднюю рейку остается на одном месте, а не топчется вокруг нивелира.


3. Назначение и принцип работы компенсатора

Вместо уровня в некоторых геодезических измерительных приборах применяется компенсатор небольших углов наклона осей прибора.

Существуют жидкостные, механические и оптико-механические компенсаторы; наиболее часто применяются оптико-механические компенсаторы, в которых главным узлом является подвесное маятниковое устройство. На этом устройстве укреплены оптические детали или системы, предназначенные либо для изменения направления оси прибора либо для параллельного смещения этой оси. Непременной составной частью оптико-механического компенсатора является демпфер, предназначенный для гашения и ограничения собственных колебаний маятниковой подвесной системы. Приведем схему оптико-механического компенсатора, предназначенного для удержания в горизонтальном положении визирной оси трубы нивелира Ni007 (рис.9).

1. пентапризма для изменения направления горизонтального луча,

2. линза телеобъектива,

3. линза телеобъектива,

4. окуляр,

5. призма, подвешенная на простом физическом маятнике,

6. призма для направления лучей в окуляр 4.


В нивелире русского производства Н3К компенсатор состоит из двух прямоугольных стеклянных призм, одна из которых подвешена к верхней части корпуса трубы на двух парах стальных нитей (рис. 10).

1. корпус трубы,

2. призма, жестко соединенная с корпусом трубы,

3. призма, подвешенная на нитях,

4. нити подвеса призмы,

5. центр тяжести системы,

6. демпфер.

С помощью этих призм изображение рейки передается в плоскость сетки нитей по горизонтальному направлению (S - S) при небольшом наклоне трубы; диапазон компенсируемых углов наклона 7+15', ошибка горизонтальности визирной линии трубы - не больше 0.5"; систематическая ошибка недокомпенсации - не более 0.3" на 1' наклона трубы; время затухания колебаний - не более 2 секунд.

Широкое применение находят геодезические приборы, в которых уровень заменен автоматическим устройством — компенсатором наклона. В теодолитах это компенсатор наклона индекса вертикального лимба, в нивелирах — компенсатор наклона визирной линии. Начальная установка прибора может проводиться грубо, поэтому компенсаторы наклона позволяют повысить производительность работ и в диапазоне ± 10' и более обеспечить необходимую точность установки (чувствительность компенсаторов доходит до 0,2").

Наибольшее распространение получили маятниковые компенсаторы. Компенсировать угол наклона ε зрительной трубы можно различными способами:

1) переместить сетку нитей из положения Z в положение ; соответствующее горизонтальному направлению визирной линии;

2) изменить направление горизонтального луча визирования таким образом, чтобы он прошел через горизонтальную нить Z смещенной сетки;

3) осуществить параллельное смещение горизонтального луча визирования на величину , при котором луч пройдет через горизонтальную нить смещенной сетки.

Компенсацию угла наклона зрительной трубы можно осуществить механическим, оптическим или оптико-механическим способами. Примером механического компенсатора является подвешенный на трех стальных нитях диск с сеткой нитей, представляющий собой физический маятник. Основное уравнение компенсации имеет вид: , f - эквивалентное фокусное расстояние объектива зрительной трубы; S - длина рычага маятника, несущего сетку нитей (длина нитей подвески маятника). Отношение  называется угловым увеличением компенсатора. В приведенном примере S = f и п=1.

Широкое распространение в нивелирах получили оптико-механические компенсаторы. Чувствительный элемент компенсатора представляет собой оптическую деталь (или систему оптических деталей), подвешенную с помощью какой-либо системы подвески. Такими компенсаторами являются компенсаторы с поворотом визирного луча и компенсаторы с параллельным смещением визирного луча.

Оптико-механические компенсаторы характеризуются коэффициентами механической  и оптической  компенсации.

Наклон основания маятника, жестко соединенного со зрительной трубой, на угол ε вызывает отклонение его чувствительного элемента от первоначального положения на угол ε ``, величина которого зависит только от механических связей основания маятника с подвижной частью подвески и от свойств материала подвески. Отношение ε``: ε называется коэффициентом механической компенсации KM. Величина KM зависит от выбранного типа подвески и определяется ее параметрами.

Отклонение чувствительного элемента маятника на угол  приводит к изменению ориентации оптической детали относительно направления визирования, при этом оптическая деталь изменяет первоначальное направление линии визирования на угол , величина которого зависит от оптических свойств подвешенной детали. Коэффициент компенсации, обусловленный действием оптических свойств подвешенной детали, называется оптическим коэффициентом компенсации . Величина , зависит от вида и параметров оптической детали.

Общий коэффициент компенсации К обусловлен действием механических связей и оптических свойств деталей.

В компенсаторах с поворотом визирного луча в качестве чувствительных элементов широко используются подвешенные отражающие поверхности. В случае одного подвешенного зеркала .

Общий коэффициент компенсации К для системы компенсации, состоящей из п подвижных и т неподвижных зеркал при нечетном числе отражений, определяют по формуле: .При наличии точек системы с четным числом отражений от неподвижных и подвижных зеркал формула для К имеет вид: .

Для поворота визирного луча в компенсаторах применяют также подвешенные линзы.

При наклоне компенсатора на угол линза наклоняется на угол , при этом угол падения φ визирного луча на линзу составит , а угол , на который отклонится луч линзой . Полный коэффициент компенсации определяется формулой: .

Угол ε`отклонение луча линзой при угле падения φ луча на линзу зависит от типа и параметров линзы. Для линзы типа менаска толщиной d, обращенного к падающему лучу выпуклой стороной, имеющему радиусы кривизны r1 и r2 и показатель преломления n:

В практике применяют большое разнообразие подвесок маятниковых компенсаторов. Наиболее простым видом подвески является физический маятник, положение которого не меняется при наклоне базы. На точность установки такого маятника в отвесное положение влияют силы трения в опорах оси вращения маятника, которые должны быть минимальными. Лучшие результаты дают подвески с опорами на центрах, на кернах, на ножевой опоре, а также магнитная подвеска. Применяют упругие подвески на эластичной пружине, торсионные подвески на упругой закрученной нити или ленточке, но наиболее распространенным видом подвесок является подвеска на тонких металлических нитях. Существуют несколько схем подвесок оптической детали компенсатора на нитях – подвеска на параллельных нитях, на скрещивающихся нитях, на нитях в форме трапеции.

Для успокоения собственных свободных колебаний чувствительного элемента компенсаторов применяются устройства, которые называются успокоителями или демпферами. В качестве успокоителей колебаний обычно применяют воздушные или электромагнитные демпферы.

При расчете демпфера исходными параметрами являются: диапазон работы компенсатора ; порог чувствительности маятника δ; время успокоения  маятника (время успокоения регламентируется по ГОСТ 10528-76 и не должно превышать 2 с.).



Информация о работе «Использование компенсаторов в геодезии»
Раздел: Геология
Количество знаков с пробелами: 31881
Количество таблиц: 0
Количество изображений: 9

Похожие работы

Скачать
66757
0
0

... масштабов получается делением листа карты масштаба 1/1000000 4 л –1/500000 обозн буквами А Б В Г 9 л – 1/ 300000 – римскими цифрами 22 Виды погрешностей измерений, их классификация измерения в геодезии рассматриваются с двух точек зрения: количественной и качественной, выражающей числовое знаечние измеренной величины, и качественной – характер её точность. Из практики ...

Скачать
51477
4
6

... выполнения исполни­тельной топографической съемки. Эти планы при приемке объектов в эксплуатацию одновременно являются и юридическим документом, подтверждающим правильность переноса на местность проектов подземных коммуникаций, здании, сооружений, дорог, благоустройства, озеленения и вертикалыной пла­нировки территории, а также подтверждающим фактиче­ски произведенный объем строи­тельства. ...

Скачать
88097
19
0

... с ценой деления 1 сек. Области применения: построение геодезических сетей сгущения (триангуляция 4 класса, полигонометрия IV класса), в прикладной геодезии (строительство, изыскания и т.д.), астрономо- геодезических измерениях (определение азимута по Солнцу и по Полярной Звезде). Модель 3Т5КП предназначена для измерения горизонтальных и вертикальных углов и не имеет микрометра. Области ...

Скачать
33048
15
9

... 10І 20І 31 Московский Государственный Университет Геодезии и Картографии кафедра геодезии КУРСОВАЯ РАБОТА тема: Проектирование геодезической сети сгущения и съемочной сети в равнинно-пересеченных и всхолмленных районах при стереотопографической съемке для получения карты масштаба 1:25 000 с высотой сечения рельефа 2 метра работу выполнил: работу проверил: студент ГФ II-1 Лебедев ...

0 комментариев


Наверх