2. Молнии

Молния — это гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим ее громом.

Гром — звук в атмосфере, сопровождающий разряд молнии. Вызывается колебаниями воздуха под влиянием мгновенного повышения давления на пути молнии.

Наиболее часто молнии возникают в кучево-дождевых облаках. В раскрытие природы молнии внесли вклад американский физик Б. Франклин (1706-1790), русские ученые М. В. Ломоносов (1711-1765) и Г. Рихман(1711-1753), погибший от удара молнии при исследованиях атмосферного электричества.

Молнии делятся на внутриоблачные, т. е. проходящие в самих грозовых облаках, и наземные, т. е. ударяющие в землю. Процесс развития наземной молнии состоит из нескольких стадий.

На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизируют их. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, соединяясь, дают начало яркому термоионизированному каналу с высокой проводимостью — ступенчатому лидеру. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью 5 х 107 м/с, после чего его движение приостанавливается на несколько десятков мксек, а свечение сильно ослабевает. В последующей стадии лидер снова продвигается на несколько десятков метров, яркое свечение при этом охватывает все пройденные ступени. Затем снова следует остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2 х 105 м/сек. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности земли предметов выбрасывается ответный стример, соединяющийся с лидером. На этом явлении основано создание молниеотвода. В заключительной стадии по ионизированному лидером каналу следует обратный, или главный разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, сильной яркостью и большой скоростью продвижения 1О7..1О8 м/с. Температура канала при главном разряде может превышать 25000°С, длина канала молнии 1-10 км, диаметр — несколько сантиметров. Такие молнии называются затяжными. Они наиболее часто бывают причиной пожаров. Обычно молния состоит из нескольких повторных разрядов, общая длительность которых может превышать 1с. Внутриоблачные молнии включают в себя только лидерные стадии, их длина от 1 до 150 км. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы. Эти обстоятельства учитываются при устройстве молниеотвода. В отличие от опасных молний, называемых линейными, существуют шаровые молнии, которые нередко образуются вслед за ударом линейной молнии. Молнии, как линейная, так и шаровая, могут быть причиной тяжелых травм и гибели людей. Удары молний могут сопровождаться разрушениями, вызванными её термическими и электродинамическими воздействиями. Наибольшие разрушения вызывают удары молний в наземные объекты при отсутствии хороших токопроводящих путей между местом удара и землей. От электрического пробоя в материале образуются узкие каналы, в которых создается очень высокая температура, и часть материала испаряется со взрывом и последующим воспламенением. Наряду с этим возможно возникновение больших разностей потенциалов между отдельными предметами внутри строения, что может быть причиной поражения людей электрическим током. Весьма опасны прямые удары молний в воздушные линии связи с деревянными опорами, так как при этом могут возникать разряды с проводов и аппаратуры (телефон, выключатели) на землю и другие предметы, что может привести к пожарам и поражению людей электрическим током. Прямые удары молнии в высоковольтные линии электропроводов могут быть причиной коротких замыканий. Опасно попадание молнии в самолёты. При ударе молнии в дерево могут быть поражены находящиеся вблизи него люди.

3. Защита от молний

Разряды атмосферного электричества способны вызвать взрывы, пожары и разрушения зданий и сооружений, что привело к необходимости разработки специальной системы молниезащиты.

Молниезащита — комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от разрядов молнии.

Молния способна воздействовать на здания и сооружения прямыми ударами (первичное воздействие), которые вызывают непосредственное повреждение и разрушение, и вторичными воздействиями — посредством явлений электростатической и электромагнитной индукции. Высокий потенциал, создаваемый разрядами молнии, может заноситься в здания также по воздушным линиям и различным коммуникациям. Канал главного разряда молнии имеет температуру 20 000°С и выше, вызывающую пожары и взрывы в зданиях и сооружениях.

Здания и сооружения подлежат молниезащите в соответствии с СН 305-77. Выбор защиты зависит от назначения здания или сооружения, интенсивности грозовой деятельности в рассматриваемом районе и ожидаемого числа поражений объекта молнией в год.

Интенсивность грозовой деятельности характеризуется средним числом грозовых часов в году пч или числом грозовых дней в году пд. Определяют ее с помощью соответствующей карты, приведенной в СН 305-77, для конкретного района.

Применяют и более обобщенный показатель — среднее число ударов молнии в год (п) на 1 км2 поверхности земли, который зависит от интенсивности грозовой деятельности.

Таблица 19. Интенсивность грозовой деятельности

Интенсивность грозовой деятельности, ч/год 10-20 20-40 40-60 60-80 80 и более
п 1 3 6 9 12

Ожидаемое число поражений молнией в год зданий и сооружений N, не оборудованных молниезащитой, определяется по формуле:

N = (S + 6hx) (L + 6hx) n • 10"6,

где S и L — соответственно ширина и длина защищаемого здания (сооружения), имеющего в плане прямоугольную форму, м; для зданий сложной конфигурации при расчете N в качестве S и L принимают ширину и длину наименьшего прямоугольника, в который может быть вписано здание в плане; hx — наибольшая высота здания (сооружения), м; п. — среднегодовое число ударов молнии в 1 км2 земной поверхности в месте расположения здания. Для дымовых труб, водонапорных башен, мачт, деревьев ожидаемое число ударов молнии в год определяют по формуле:

В незащищенную от молнии линию электропередачи протяженностью L км со средней высотой подвеса проводов hcp число ударов молнии за год составит при допущении, что опасная зона распространяется от оси линии в обе стороны на 3 hcp,


N = 0,42 х К)"3 xLhcpnч

В зависимости от вероятности вызванного молнией пожара или взрыва, исходя из масштабов возможных разрушений или ущерба, нормами установлены три категории устройства молниезащиты.

В зданиях и сооружениях, отнесенных к I категории молниезащиты, длительное время сохраняются и систематически возникают взрывоопасные смеси газов, паров и пыли, перерабатываются или хранятся взрывчатые вещества. Взрывы в таких зданиях, как правило, сопровождаются значительными разрушениями и человеческими жертвами.

В зданиях и сооружениях II категории молниезащиты названные взрывоопасные смеси могут возникнуть только в момент производственной аварии или неисправности технологического оборудования, взрывчатые вещества хранятся в надежной упаковке. Попадание молнии в такие здания, как правило, сопровождается значительно меньшими разрушениями и жертвами.

В зданиях и сооружениях III категории от прямого удара молнии может возникнуть пожар, механические разрушения и поражения людей. К этой категории относятся общественные здания, дымовые трубы, водонапорные башни и др.

Здания и сооружения, относимые по устройству молниезащиты к I категории, должны быть защищены от прямых ударов молнии, электростатической и электромагнитной индукции и заноса высоких потенциалов через наземные и подземные металлические коммуникации по всей территории России.

Здания и сооружения II категории молниезащиты должны быть защищены от прямых ударов молнии, вторичных ее воздействий и заноса высоких потенциалов по коммуникациям только в местностях со средней интенсивностью грозовой деятельности лч = 10.

Здания и сооружения, отнесенные по устройству молниезащиты к III категории, должны быть защищены от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации, в местностях с грозовой деятельностью 20 ч и, более в год.

Здания защищаются от прямых ударов молнии молниеотводами. Зоной защиты молниеотвода называют часть пространства, примыкающую к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежности. Зона защиты А обладает степенью надежности 99,5% и выше, а зона защиты Б — 95% и выше.

Молниеотводы состоят из молниеприемников (воспринимающих на себя разряд молнии), заземлителей, служащих для отвода тока молнии в землю, и токоотводов, соединяющих молниеприемники с заземлителями.

Молниеотводы могут быть отдельно стоящими или устанавливаться непосредственно на здании или сооружении. По типу молниеприемника их подразделяют на стержневые, тросовые и комбинированные. В зависимости от числа действующих на одном сооружении молниеотводов, их подразделяют на одиночные, двойные и многократные.

Молниеприемники стержневых молниеотводов устраивают из стальных стержней различных размеров и форм сечения. Минимальная площадь сечения молниеприемника — 100 мм2, чему соответствует круглое сечение стержня диаметром 12 мм, полосовая сталь 35 х 3 мм или газовая труба со сплющенным концом.

Молниеприемники тросовых молниеотводов выполняют из стальных многопроволочных тросов сечением не менее 35 мм2 (диаметр 7 мм).

В качестве молниеприемников можно использовать также металлические конструкции защищаемых сооружений — дымовые и другие трубы, дефлекторы (если они не выбрасывают горючие пары и газы), металлическую кровлю и другие металлоконструкции, возвышающиеся над зданием или сооружением.

Токоотводы устраивают сечением 25-35 мм2 из стальной проволоки диаметром не менее 6 мм или стали полосовой, квадратного или иного профиля. В качестве токоотводов можно использовать металлические конструкции защищаемых зданий и сооружений (колонны, фермы, пожарные лестницы, металлические направляющие лифтов и т. д.), кроме предварительно напряженной арматуры железобетонных конструкций. Токоотводы следует прокладывать кратчайшими путями к заземлителям. Соединение токоотводов с молниеприемниками и заземлителями должно обеспечивать непрерывность электрической связи в соединяемых конструкциях, что, как правило, обеспечивается сваркой. Токоотводы нужно располагать на таком расстоянии от входов в здания, чтобы к ним не могли прикасаться люди во избежание поражения током молнии.

Заземлители молниеотводов служат для отвода тока молнии в землю, и от их правильного и качественного устройства зависит эффективная работа молниезащиты.

Конструкция заземлителя принимается в зависимости от требуемого импульсного сопротивления с учетом удельного сопротивления грунта и удобства его укладки в грунте. Для обеспечения безопасности рекомендуется ограждать Заземлители или во время грозы не допускать людей к заземлителям на расстояние менее 5-6 м. Заземлители следует располагать вдали от дорог, тротуаров и т. д.

Ураганы представляют собой явление морское и наибольшие разрушения от них бывают вблизи побережья. Но они могут проникать и далеко на сушу. Ураганы могут сопровождаться сильными дождями, наводнениями, в открытом море образуют волны высотой более 10 м, штормовыми нагонами. Особой силой отличаются тропические ураганы, радиус ветров которых может превышать 300 км (рис. 22).

Ураганы — явление сезонное. Ежегодно на Земле развивается в среднем 70 тропических циклонов. Средняя продолжительность урагана около 9 дней, максимальная — 4 недели.



Информация о работе «Атмосферные опасности»
Раздел: Безопасность жизнедеятельности
Количество знаков с пробелами: 45501
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
66075
12
37

... » и от 01.02.2007 № 50 «Об экологическом аудите энергокомпаний ОАО РАО «ЕЭС России» в филиалах Сыктывкарские электрические сети и Южные электрические сети ОАО «АЭК «Комиэнерго» был запланирован с 03.12.07 по 20.12.07 и успешно проведен внутренний экологический аудит на соответствие деятельности природоохранному законодательству Российской Федерации силами обученных специалистов. 2. СПЕЦИАЛЬНАЯ ...

Скачать
62142
4
3

... Это можно объяснить тем, что в этих районах расположены крупные промышленные предприятия и проходят основные автомагистрали города. Если сопоставить карту загрязнения атмосферного воздуха и карту заболеваемости онкологическими новообразованиями, то можно сделать вывод, что районам с высоким уровнем загрязнения атмосферного воздуха соответствуют районы с высоким уровнем заболеваемости населения ...

Скачать
40914
0
0

... при которой владелец разрешения заранее уведомляется о предстоящем аннулировании; 11) определять (участвовать в определении) размеры вреда, причиненного в результате нарушения законодательства Республики Казахстан в области охраны атмосферного воздуха, и на основании этого предъявлять к виновным лицам требования о добровольном возмещении этого вреда либо предъявлять иски в суд; 12) проводить ...

Скачать
74446
0
0

... веществ, их концентрацию в воздухе, почве, снежном покрове, установить границы распространения. До сего времени законодательство, как известно, исходит из необходимости охраны атмосферного воздуха главным образом от загрязнений и только в пределах населенных пунктов. Однако такая концепция перестала удовлетворять потребностям практики. В современных условиях атмосферу требуется охранять не ...

0 комментариев


Наверх