Содержание

 

1. Смесеобразование в бензиновых двигателях

1.1 Смесеобразование при карбюрации

1.2 Смесеобразование при центральном и распределенном впрыске топлива

1.3 Особенности смесеобразования в газовых двигателях

2. Смесеобразование в дизелях

2.1 Особенности смесеобразования

2.2 Способы смесеобразования. Типы камер сгорания

Библиографический список

 


1. Смесеобразование в бензиновых двигателях

Под смесеобразованием в двигателях с искровым зажиганием подразумевают комплекс взаимосвязанных процессов, сопровождающих дозирование топлива и воздуха, распыливание и испарение топлива и перемешивание его с воздухом. Качественное смесеобразование является необходимым условием получения высоких мощностных, экономических и экологических показателей двигателя.

Протекание процессов смесеобразования в значительной степени зависит от физико-химических свойств топлива и способа его подачи. В двигателях с внешним смесеобразованием процесс смесеобразования начинается в карбюраторе (форсунке, смесителе), продолжается во впускном коллекторе и заканчивается в цилиндре.

После выхода струи топлива из распылителя карбюратора или форсунки начинается распад струи под воздействием сил аэродинамического сопротивления (вследствие разности скоростей движения воздуха и топлива). Мелкость и однородность распыливания зависят от скорости воздуха в диффузоре, вязкости и поверхностного натяжения топлива. При пуске карбюраторного двигателя при его относительно низкой температуре распыливания топлива практически нет, и в цилиндры поступает до 90 и более процентов топлива в жидком состоянии. Вследствие этого для обеспечения надежного пуска необходимо существенно увеличивать цикловую подачу топлива (доводить α до значений ≈ 0,1-0,2).

Процесс распыливания жидкой фазы топлива протекает также в проходном сечении впускного клапана, а при не полностью открытой дроссельной заслонке – в образуемой ею щели.

Часть капель топлива, увлекаемая потоком воздуха и паров топлива, продолжает испаряться, а часть – оседает в виде пленки не стенках смесительной камеры, впускного коллектора и канала в головке блока. Под действием касательного усилия от взаимодействия с потоком воздуха пленка движется в сторону цилиндра. Так как скорости движения топливовоздушной смеси и капель топлива отличаются незначительно (на 2–6 м/c), то интенсивность испарения капель низка. Испарение с поверхности пленки протекает более интенсивно. Для ускорения процесса испарения пленки впускной коллектор в двигателях карбюраторных и с центральным впрыскиванием подогревают.

Разное сопротивление ветвей впускного коллектора и неравномерное распределение пленки в этих ветвях приводят к неравномерности состава смеси по цилиндрам. Степень неравномерности состава смеси может достигать 15–17 %.

При испарении топлива протекает процесс его фракционирования. В первую очередь испаряются легкие фракции, а более тяжелые попадают в цилиндр в жидкой фазе. В результате неравномерного распределения жидкой фазы в цилиндрах может оказаться не только смесь с разным соотношением топливо – воздух, но и топливо различного фракционного состава. Следовательно, и октановые числа топлива, находящегося в разных цилиндрах, будут неодинаковыми.

Качество смесеобразования улучшается с ростом частоты вращения n. Особенно заметно негативное влияние пленки на показатели работы двигателя на переходных режимах.

Неравномерность состава смеси в двигателях с распределенным впрыскиванием определяется, главным образом, идентичностью работы форсунок. Степень неравномерности состава смеси составляет ±1,5 % при работе по внешней скоростной характеристике и ±4 % на холостом ходу с минимальной частотой вращения nх.х.min.

При впрыскивании топлива непосредственно в цилиндр возможны два способа смесеобразования:

− с получением гомогенной смеси;

− с расслоением заряда.

Реализация последнего способа смесеобразования сопряжена с немалыми трудностями.

В газовых двигателях с внешним смесеобразованием топливо вводится в воздушный поток в газообразном состоянии. Низкое значение температуры кипения, высокое значение коэффициента диффузии и существенно меньшее значение теоретически необходимого для сгорания количества воздуха (например для бензина − 58,6, метана – 9,52 (м3 возд)/(м3 топл) обеспечивают получение практически гомогенной горючей смеси. Распределение смеси по цилиндрам более равномерное.

1.1 Смесеобразование при карбюрации

Распыливание топлива. После выхода струи топлива из распылителя карбюратора начинается ее распад. Под действием сил аэродинамического сопротивления (скорость воздуха существенно выше скорости топлива) струя распадается на пленки и капли различных диаметров. Средний диаметр капель на выходе из карбюратора ориентировочно можно считать равным 100 мкм. Улучшение распыливания увеличивает суммарную поверхность капель и способствует более быстрому их испарению. Увеличивая скорость воздуха в диффузоре и уменьшая вязкость и коэффициент поверхностного натяжения топлива, улучшают мелкость и однородность распыливания. При запуске карбюраторного двигателя распыливания топлива практически нет.

Образование и движение пленки топлива. Под действием потока воздуха и гравитационных сил некоторые капли оседают на стенках карбюратора и впускного трубопровода, образуя топливную пленку. На пленку топлива воздействуют силы сцепления со стенкой, касательное усилие со стороны потока воздуха, перепад статического давления по периметру сечения, а также силы тяжести и поверхностного натяжения. В результате действия этих сил пленка приобретает сложную траекторию движения. Скорость ее движения в несколько десятков раз меньше скорости потока смеси. Наибольшее количество пленки образуется на режимах полных нагрузок и малой частоты вращения, когда скорость воздуха и мелкость распыливания топлива невелики. В этом случае количество пленки на выходе из впускного трубопровода может доходить до 25 % от общего расхода топлива. Характер соотношения физических состояний горючей смеси существенно зависит от конструктивных особенностей системы топливоподачи (рис. 1).

Рис. 1. Подача топлива при карбюрации (а), центральном (б) и распределенном (в) впрыскивании: 1 – воздух; 2 – топливо; 3 – горючая смесь

Испарение топлива. Топливо испаряется с поверхности капель и пленки при сравнительно небольших температурах. Капли находятся во впускной системе двигателя примерно в течение 0,002–0,05 с. За это время успевают полностью испариться лишь самые мелкие из них. Низкие скорости испарения капель определяются главным образом молекулярным механизмом переноса теплоты и массы, поскольку большую часть времени капли движутся при незначительном обдуве воздухом. Поэтому на испарение капель заметно влияют мелкость распыливания и начальная температура топлива, влияние же температуры воздушного потока незначительно.

Пленка топлива интенсивно обдувается потоком. При этом большое значение для ее испарения имеет теплообмен со стенками впускного тракта, поэтому при центральном впрыскивании и карбюрации впускной трубопровод обычно обогревается охлаждающей двигатель жидкостью или ОГ. В зависимости от конструкции впускного тракта и режима работы карбюраторного двигателя и при центральном впрыскивании на выходе из впускного трубопровода содержание в горючей смеси паров топлива может составлять 60–95 %. Процесс испарения топлива продолжается в цилиндре во время тактов впуска и сжатия. К началу сгорания топливо практически испаряется полностью.

Таким образом, на режимах холодного пуска и прогрева, когда температуры топлива, поверхностей впускного тракта и воздуха малы, испарение бензина минимально, на режиме пуска к тому же почти отсутствует распыливание, условия смесеобразования крайне неблагоприятны.

Неравномерность состава смеси по цилиндрам. Ввиду неодинакового сопротивления ветвей впускного тракта наполнение отдельных цилиндров воздухом может отличаться (на 2–4 %). Распределение топлива по цилиндрам карбюраторного двигателя может характеризоваться значительно большей неравномерностью, главным образом, за счет неодинакового распределения пленки. Это означает, что состав смеси в цилиндрах неодинаков. Он характеризуется степенью неравномерности состава смеси:


где αi – коэффициент избытка воздуха в i-м цилиндре; α – среднее значение коэффициента избытка воздуха смеси, приготовляемой карбюратором или инжектором центрального впрыска.

Если, Di> 0, то это означает, что в данном цилиндре смесь более бедная, чем в целом по двигателю. Значение α проще всего определить по анализу состава ОГ, выходящих из i-го цилиндра. Степень неравномерности состава смеси при неудачной конструкции впускного тракта может достигать величины 20 %, что заметно ухудшает экономические, экологические, мощностные и другие показатели работы двигателя. Неравномерность состава смеси зависит также от режима работы двигателя. С ростом частоты n улучшаются распыливание и испарение топлива, поэтому неравномерность состава смеси снижается (рис. 2а). Смесеобразование улучшается и при уменьшении нагрузки, что, в частности, выражается в уменьшении степени неравномерности состава смеси (рис. 2б).

При смесеобразовании происходит фракционирование бензина. При этом в первую очередь испаряются легкие фракции (они имеют более низкое октановое число), а в каплях и пленке оказываются преимущественно средние и тяжелые. В результате неравномерного распределения жидкой фазы топлива в цилиндрах может оказаться не только смесь с разным α, но и фракционный состав топлива (а следовательно, и его октановое число) также может быть неодинаковым. Сказанное относится и к распределению по цилиндрам присадок к бензину, в частности антидетонационных. Вследствие указанных особенностей смесеобразования в цилиндры карбюраторных двигателей поступает смесь, в общем случае различающаяся по , составу топлива и его октановому числу.


Рис. 2. Изменение степени неравномерности состава смеси по 1, 2, 3 и 4-цилиндрам в зависимости от частоты вращения n (полный дроссель) (а) и нагрузки (n=2000 мин-1) (б)

1.2 Смесеобразование при центральном и распределенном впрыске топлива

Впрыскивание топлива по сравнению с карбюрацией обеспечивает:

1.  Повышение коэффициента наполнения вследствие уменьшения аэродинамического сопротивления впускной системы при отсутствии карбюратора и подогрева воздуха на впуске из-за меньшей длины впускного тракта.

2.  Более равномерное распределение топлива по цилиндрам двигателя. Отличие коэффициента избытка воздуха по цилиндрам при впрыскивании топлива составляет 6-7 %, а при карбюрации 20–30 %.

3.  Возможность повышения степени сжатия на 0,5–2 единицы при одинаковом октановом числе топлива в результате меньшего подогрева свежего заряда на впуске, более равномерного распределения топлива по цилиндрам.

4.  Повышение энергетических показателей (Ni , Ne и др.) на 3–25 %.

5.  Улучшение приемистости двигателя и более легкий его пуск.

Рассмотрим процессы смесеобразования при центральном впрыскивании аналогично протеканию этих процессов в карбюраторном двигателе и отметим основные отличия между этими процессами.

Распыливание топлива. Системы с впрыскиванием осуществляют подачу топлива под повышенным давлением, как обычно, во впускной трубопровод (центральное впрыскивание) или впускные каналы в головке цилиндров (распределенное впрыскивание) (рис. 1б, в).

Для систем центрального и распределенного впрыскивания кроме перечисленных параметров мелкость распыливания зависит также от давления впрыскивания, формы распыливающих отверстий форсунки и скорости течения бензина в них. В этих системах наибольшее применение получили электромагнитные форсунки, к которым топливо подводится под давлением 0,15¸0,4 МПа, что обеспечивает получение капель со средним диаметром 50¸400 мкм, в зависимости от типа форсунок (струйная, штифтовая или центробежная). При карбюрации этот диаметр составляет до 500 мкм.

Образование и движение пленки топлива. Количество пленки, образующейся при впрыскивании бензина, зависит от места установки форсунки, дальнобойности струи, мелкости распыливания, а при распределенном впрыскивании в каждый цилиндр – от момента его начала. Практика показывает, что при любом способе организации впрыскивания масса пленки составляет до 60...80 % от общего количества подаваемого топлива.

Испарение топлива. Особенно интенсивно испаряется пленка с поверхности впускного клапана. Однако продолжительность этого испарения невелика, поэтому при распределенном впрыскивании на тарелку впускного клапана и работе двигателя с полной топливоподачей до поступления в цилиндр испаряется лишь 30–50 % цикловой дозы топлива.

При распределенном впрыскивании на стенки впускного канала увеличивается время испарения из-за малой скорости движения пленки, и доля испарившегося топлива возрастает до 50–70 %. Чем выше частота вращения, тем меньше продолжительность испарения, а значит, уменьшается и доля испарившегося бензина.

Подогрев впускного трубопровода при распределенном впрыскивании не целесообразен, т.к. он не может заметно улучшить смесеобразование.

Неравномерность состава смеси по цилиндрам. У двигателей с распределенным впрыскиванием неравномерность состава смеси по цилиндрам зависит от качества изготовления (идентичности) форсунок и дозы впрыскиваемого топлива. Обычно при распределенном впрыскивании неравномерность состава смеси невелика. Наибольшее ее значение имеет место при минимальных цикловых дозах (в частности, на режиме холостого хода) и может достигать ±4 %. При работе двигателя на полной нагрузке неравномерность состава смеси не превышает ±1,5 %.


Информация о работе «Процессы смесеобразования»
Раздел: Транспорт
Количество знаков с пробелами: 44481
Количество таблиц: 1
Количество изображений: 10

Похожие работы

Скачать
146575
5
12

... присадками к топливу, промывка без демонтажа форсунок с помощью специальной установки и промывка на ультразвуковом стенде с демонтажом форсунок. 2. Исследование работы и процесса технической эксплуатации форсунок бензиновых двигателей 2.1 Конструкция электромагнитных форсунок Рассмотрим устройство и принцип действия форсунок на примере форсунки фирмы Бош, а также неисправности которые ...

Скачать
58660
10
4

... действия компрессора (принимается равным 0,75 - 0.81); к - показатель адиабаты сжатия (к = 1,4). 2.1.3. Расчет параметров рабочего тела на входе в цилиндры Температура воздуха на выходе из компрессора:  , К (14) Если в выбранной схеме предусмотрен охладитель, то температура после охладителя на входе в дизель определяется соотношением:  , К (15) где hх - коэффициент эффективности ...

Скачать
52437
10
2

... .ч Достигнутые значения gе для тепловозных дизелей: 4-х тактные–0,2 - 0,225 кг/кВт.ч, Литровая мощность двигателя:  , кВт/л (57) Nл=8871/(0,20096*8*1000)=5,5 кВт/л. Для тепловозных дизелей соответственно: 4-х тактные NЛ15, После окончания расчета рабочего процесса и технико-экономических показателей все основные результаты следует свести в таблицу 4. Таблица 4. Результаты расчетов. ...

Скачать
31654
0
2

... его измеряют в кубических сантиметрах или метрах): где D - диаметр цилиндра. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия: Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность. Все перечисленные характеристики двигателя прорционально зависят от размера и объема ...

0 комментариев


Наверх