6.3 Водоотливная установка

Водоприток карьерного водоотлива формируется за счет водопритоков подземных и поверхностных вод, образующихся при выпадении осадков и таяния снегового покрова. Водопритоки подземных вод отличаются относительной стабильностью во времени и составляют так называемый нормальный приток. Водопритоки поверхностных вод, напротив, отличаются значительной изменчивостью, как по времени их образования, так и по объему, и в совокупности с нормальным водопритоком образуют максимальный водоприток.

Главная передвижная насосная станция устанавливается по мере развития горных работ на дне карьера с устройством двух зумпфов емкостью не менее 3-х часового нормального притока.

Для определения более рационального и экономичного выбора насосного оборудования мной рассмотрены два варианта:

- совершенствование и развитие существующей схемы водоотлива;

-предложения по созданию новой схемы открытого карьерного водоотлива.

6.4. Насосные станции и сооружения карьерного водоотлива и системы осушения

Назначение главной передвижной насосной станции (ГПНС) – организация передвижного карьерного водоотлива при ведении горных работ в карьере.

Насосные установки подключаются через распределительный коллектор с задвижками к двум напорным магистральным трубопроводам.

Режим работы насосной станции непрерывный круглосуточный. Вид управления - автоматический с включением и выключением рабочего насоса от уровня воды в водосборнике при постоянно открытых оперативных задвижках, что предотвратит возникновение кавитации. При этом в работе предусматривается непрерывно иметь одну насосную установку с подключением к ней второй установки при достижении в зумпфе верхнего уровня воды.

Для перекачивания вод карьерного водоотлива в карьере «Восточный» используются стальные напорные трубопроводы (в две нитки) условным диаметром 300 мм, на участке «Западный» - 200 мм.

В холодный и переходный периоды года все наружные трубопроводы необходимо теплоизолировать прошивными минераловатными матами с толщиной слоя изоляции 100 мм с последующим покрытием лакостеклотканью и обвязкой проволокой.

Трубопровод системы осушения карьера представляет собой самотечный коллектор из стальных труб, в который подается вода от водопонизительных скважин. Трубопроводы от водопонизительных скважин прокладываются с достаточным уклоном для быстрого их опорожнения в холодный период времени года при остановке работы погружного электронасосного агрегата.

  6.5. Насосная станция технической воды

Насосная станция технической воды предназначена для подачи воды карьерного водоотлива расходом 4922 м3/сут по двум водоводам условным диаметром 200 мм каждый на ЗИФ. Насосная станция оборудована насосами марки ЦНС 180-212.

В связи с пуском ЗИФ-3 потребление технической воды увеличится еще на 5960 м3/сут и соответственно составит 10882 м3/сут (453,4 м3/час), вследствие чего возникает необходимость проверки насосного оборудования и водоводов на пропуск этого расхода.

Расчетный напор насосной станции определяется по формулам 6.5 и 6.6 и составит:


Hг = 4-0,07-1,04/2х9,8-0,43 = 3,39м (6.5)

Учитывая разницу в отметках между площадкой ЗИФ и приемным резервуаром насосной станции технической воды, расчетный напор составит:

Hр = 125+8,5+0,85+4 = 138,4 м (6.6)

Совмещая рабочие характеристики насосов и напорных трубопроводов, определяем, что при одновременной работе трех насосов марки ЦНС 180-212 на два напорных трубопровода условным диаметром 200 мм каждый, при ожидаемом напоре 223 м подача составит 483 м3/час и обеспечит расчетный расход технической воды на ЗИФ-3.

 

6.6. Пруд-отстойник карьерного водоотлива

Пруд-отстойник карьерного водоотлива предназначен для физико-механической очистки вод, поступающих от водоотливной установки.

Начальные концентрации для расчета очистных сооружений составляют:

- по взвешенным веществам - 178 мг/л;

- по нефтепродуктам - 0,329 мг/л.

Технологическая схема очистки и доочистки сточных вод

Очистке подвергаются все воды, поступающие из водоотлива участка «Восточный» и участка «Западный», в том числе и ливневые. В связи с этим расчет очистных сооружений произведен исходя из максимального водопритока, составляющего Qр = 979 м3/час.

Для строительства пруда-отстойника понадобится значительная площадь (F = 4764 м2), принимается строительство двух прудов-отстойников, разделенных каждый на две параллельные секции дамбой. Каждая секция оборудована отсеками из полупогружных щитов для задержания плавающих нефтепродуктов, и фильтрами доочистки.

Вследствие этого расчет выполнен исходя из половинного максимального водопритока Qр = 979/2 = 490 м3/час.

Предусматривается возможность самостоятельной работы каждой секции за счет устройств по переключению подачи загрязненного расхода в одну из них. Подача стоков в отстойник (каждую секцию) производится рассеянным придонным выпуском. В отстойнике происходит осаждение взвешенных веществ и всплытие нефтепродуктов.

Дальнейшая очистка отстоенных стоков осуществляется в отсеке доочистки.

Отсек доочистки представляет собой комплект безнапорных съемных осветлительных фильтров с загрузкой из дробленого керамзита крупностью 10-15 мм.

Движение воды через фильтрующую загрузку осуществляется по направлению снизу вверх, для чего предусмотрены специальные отверстия.

На осветлительных фильтрах происходит дополнительная очистка воды от эмульгированных нефтепродуктов.

Время прохождения (отстаивания) стоков в отстойнике составляет 12 часов, а общая длина отсека для задерживания нефтепродуктов 75,3 м. Учитывая принятые конструктивные изменения размеров отстойника, производим уточнение расчета.

Эксплуатационные данные и результаты опытов показывают, что в основу степени очистки сточных вод от нефтепродуктов должна быть положена скорость всплытия нефтяных капель диаметром 100 мк и более.

Скорость всплытия частиц нефтепродуктов определяется по уравнению Стокса:

Umin = 981/18*d2*(γ12) /μ см/сек (6.7)


где d – крупность всплывающих частиц нефтепродуктов -100 мк = 0,01 см;

γ1 – объемный вес воды – 1,0 г/см3;

γ2 – объемный вес нефти – 0,87 г/см3;

μ – вязкость сточных вод – 0,01 г/см·с.

Umin = 981/18х0,012х(1-0,87)/0,01 = 0,071 см/сек

Продолжительность всплытия частиц нефтепродуктов составит:

tнп = hпр*100/ Umin , час (6.8)

tнп = 2,5х100/0,071 = 0,98 час

Так как время пребывания сточных вод в отстойнике T = 12 час гораздо более времени всплытия tнп = 0,98 час, гарантируется полное задержание нефтяных частиц крупностью 100 мк и более, вследствие чего длина отсека для задерживания нефтепродуктов принимается Lнп = 60 м. Отсек отгораживается полупогружными щитами.

Сбор всплывших в отстойнике нефтепродуктов осуществляется сборным лотком. Удаление нефтепродуктов из лотка производится по самотечному трубопроводу в приемник, установленный в сборном колодце. Нефтешлам вывозится на дожигание в котельную ГОКа. Осадок вывозится автотранспортом на полигон отходов по согласованию с СЭС.

Эффект отстаивания (степень очистки) составляет 80%.

Концентрация взвешенных веществ в отстойнике составит:

Cex = Cen(1-Э) = 178 (1-0,8) = 35,6 мг/л; (6.9)

где Cen - начальная концентрация взвешенных веществ в очищаемой воде –178 мг/л.

Концентрация нефтепродуктов в отстоенных стоках составит:

Pex = Pen(1-Э) = 0,329 (1-0,8) = 0,066 мг/л, (6.10)

где Pen - начальная концентрация нефтепродуктов - 0,329 мг/л.

Осветлительные фильтры

Количество фильтров в каждой секции отстойника n = 18 шт. Размеры фильтра 1500х1000х500 (h) мм. Общая площадь фильтрования составит:

Fф = 1,5х1,0х18= 27,0 м2

Суммарный объем загрузки:

Wф = Fф *h = 27,0х0,5 = 13,5 м3 (6.11)

Соответственно на две секции:

Wф = 13,5х2 = 27 м3  (6.12)

Скорость фильтрования составит:

Vф = Qр/Fф = 490/27 = 18 м/час (6.13)

В качестве загрузки принят дробленый керамзит с крупностью зерен 10-15 мм. Согласно справочным данным, эффективность очистки от взвешенных веществ и нефтепродуктов на фильтрах с керамзитовой загрузкой составляет 60%. Таким образом, концентрация загрязнений в очищенных стоках после фильтров составит:

- по взвешенным веществам:

Cex = Cex(1-Э) = 35,6(1-0,6) = 14,24 мг/л;м

- по нефтепродуктам:

Pex = Pex(1-Э) = 0,066 (1-0,6) = 0,026 мг/л.

Расчетная удельная грязеемкость фильтрующей загрузки составляет 40 кг/м3. Полная расчетная грязеемкость фильтров двух секций составит:

Pф = 40* Wф = 40х27 = 1080 кг (6.14)

Прошедшие очистку воды карьерного водоотлива используются в дальнейшем для производственного водоснабжения ЗИФ.


7.ЭЛЕКТРОМЕХАНИЧЕСКАЯ ЧАСТЬ 7.1. Ремонтно-механическая база

В состав ремонтно-механической базы Олимпиадинского ГОКа входят:

-  токарный цех;

-  агрегатный цех;

-  цех ремонта топливной аппаратуры;

-  моторный цех;

-  цех ремонта электродвигателей и подстанций;

-  шиномонтажный участок.

Текущее обслуживание, ремонт экскаваторов, буровых станков проводится на местах работ, согласно годовых и месячных графиков планово-предупредительных ремонтов.

Капитальный ремонт горного оборудования проводится на ремонтно-монтажной площадке, расположенной на борту карьера.

Кроме машинистов экскаваторов и буровых станков, в ремонтных работах участвует бригада в составе 27 человек.

Для технического обслуживания и ремонта бульдозеров, погрузчиков имеется цех тяжелой техники, расположенный в 800 м от Восточного борта карьера.

Техническое обслуживание карьерных автосамосвалов производится в ремонтно-гаражном боксе, расположенном на расстоянии 4.5 км от Северного борта карьера.

Для автосамосвалов БелАЗ 7519 проводится:

ТО-1 – через 250 моточасов, продолжительностью 3 час.;

ТО-2 – через 500 моточасов, продолжительностью 7 час.;

ТО-3 – через 1000 моточасов, продолжительностью 9 час.;

ТО-4 – через 2000 моточасов, продолжительностью 11 час.


Кроме того, 2 раза в год по всем маркам автосамосвалов, проводится сезонное обслуживание (СО) – 11 час.

В процессе технического осмотра и обслуживания выявляются дефекты агрегатов и узлов горного оборудования и автотранспорта, производится их замена.

Основными задачами для ремонтно-механической службы карьера, являются:

-  организация и своевременное выполнение планово-предупредительных ремонтов;

-  повышение качества ремонта оборудования;

-  улучшение обеспечения ремонтно-эксплуатационными материалами, запасными частями и инструментами;

-  проведение дефектоскопии с привлечением специализированных организаций, для гарантийного обеспечения его безопасной работы оборудования.


8. ЭНЕРГОСНАБЖЕНИЕ КАРЬЕРА   8.1 Общее описание электрооборудования и электроснабжение карьера

Электроснабжение карьера осуществляется по шести станционным ВЛ-6кВ от ПС 110/6 кВ „Олимпиадинская” с ответвлениями. Отдельно от двух ВЛ-6кВ запитано осушение карьера, склад ВВ, ремонтная база, вахтовый посёлок, дробильный комплекс, карьерный водоотлив. От четырёх ВЛ-6кВ запитаны электропотребители карьера (экскаваторы, буровые станки), через ПП и ПКТП, причём, две карьерные ВЛ-6кВ закольцованы.

Основные потребители электроэнергии на карьере „Восточный”: экскаваторы ЭКГ-10,станки буровые СБШ-250, скважины осушения, внутрикарьерный водоотлив, насосная станция технической воды на ЗИФ, освещение карьера, складов, отвалов, вахтового посёлка с котельной и скважинами хозяйственной питьевой воды, ремонтная база, щебёночный комплекс.

8.2. Электрическое освещение

Расчёт освещения карьера, отвала и промплощадок

Определяем освещаемую территорию, которая представлена в виде прямоугольника

(8.1)

где - длина карьера, м.

- ширина карьера, м.

Определяем световой поток необходимый для освещения


(8.2)

где - требуемая нормируемая освещённость, лк.

Места работы машин и механизмов должны иметь усиленную освещенность =5 лк.

Определяем площадь с усиленной освещённостью

(8.3)

где - число уступов, на которых одновременно проводят работы;

- средняя ширина уступа, м;

- средняя высота уступа, м;

- угол откоса уступа, град.

Определяем требуемый световой поток для создания усиленной освещённости

(8.4)

Определяем полный световой поток для освещения карьера

 (8.5)

Принимаем для освещения карьера прожекторы типа ОУКсН – 20000 с лампами ДКсТ – 20000.

Определяем требуемое количество прожекторов

 (8.6)

где - коэффициент запаса,

- коэффициент, учитывающий потери света;

- КПД прожекторов;

- световой поток лампы в прожекторе.

Принимаем к установке 7 прожекторов СКсН – 20000.

Определяем мощность силового трансформатора для питания ламп ДКсТ

(8.7)

где - мощность лампы, кВт;

- коэффициент мощности осветительной;

- КПД осветительной сети.

Принимаем к установке трансформаторные подстанции с трансформаторами ТМ – 40/6/0,4.

Определяем ток в кабеле для питания ламп ДКсТ – 20000

(8.8)

Принимаем для питания ламп кабель АНРБ , имеющий .

Определяем световой поток для прожекторов ПЗС

(8.9)

Определяем количество прожекторов ПЗС с лампами мощностью 500 Вт

(8.10)

 

Расчёт освещения дорог

Дорога имеет протяженность 6 км по добыче и 2,5 км по вскрыше. Принимаем светильники СКЗРП – 500 с лампами ДРЛ – 400. Расположение светильников принимают боковое на опорах. Расстояние между опорами . Высота подвески светильников .

Определяем . Расстояние от оси опор до осевой линии дороги Определяем следующие величины:

Определяем относительную освещённость точки на оси дороги на равном расстоянии между опорами . Относительная освещённость для условной лампы со световым поток 1000 лм Соответственно относительная освещённость, создаваемая в точке А от двух ламп составит:

(8.11)

Определяем необходимый световой поток одной лампы

(8.12)

где - коэффициент запаса (=1,5 для люминесцентных ламп; =1,3 для накаливания);

- коэффициент, учитывающий свет удалённых светильников (=1,1…1,2).

Определяем количество светильников на вскрышной трассе

(8.13)

где  - длина дороги, м.

Определяем суммарную установленную мощность ламп

 (8.14)

 

Расчёт освещения помещений

Сущность метода удельной мощности заключается в том, что между величиной освещённости  и мощностью источников света приходящейся на 1 м2 существует прямопропорциональная зависимость. Величину  определяют по таблицам, которые приводятся для определенных типов светильников, коэффициент запаса , коэффициент неравномерности освещённости , коэффициент отражения . Величина  находится в зависимости от высоты подвеса светильников , площади , освещённости .

Расчёт освещения помещений выполняется методом удельной мощности, результаты сводим в таблицу 9.1

 

8.3 Электрические нагрузки и выбор трансформаторных подстанций

Расчёт электрических нагрузок производят методом установления мощности и коэффициента спроса. Все электроприёмники делят на группы одинаковых по мощности: назначению и характеру работы. Для одноковшовых экскаваторов коэффициент спроса определяют в зависимости от суммарного количества одинаковых экскаваторов, получающих питание от подстанций, (при этом учитывается характер работы – добыча или вскрыша). Расчётную нагрузку средних и мощных экскаваторов определяют раздельно для сетевых электродвигателей и трансформаторов, так как они работают с разными коэффициентами мощности . Коэффициент мощности для трансформаторов=0,7.

Расход электроэнергии активной  и реактивной  определяем по расчётной активной мощности  и расчётной реактивной мощности  групп электроприёмников путём умножения на число часов работы групп электроприёмников в год.

Таблица 8.1

Расчёт освещения помещений

Наименование

помещений

АБК Котельная

Материальный

склад

Электроцех Механические мастерские

Тракторный

бокс

Исходные

данные

высота, h, м 4 7 7 6 6 5,5
площадь, s, м2 750 1700 1800 400 400 420
для проектиро-вания

коэффициент

отражения

50 10 30 30 30 10

30 10 30 30 10 10

10 10 10 10 10 10

300 30 30 300 300 150

1,5 1,5 1,3 1,5 1,5 1,3

1,1 1,15 1,15 1,1 1,1 1,15
виды ламп люм. нпк. нак. люм. люм. нак.

Расчёт количества

ламп

Тип светильника (группа)

ЛДОР

(4гр)

УП-24

(5гр)

УПД-500

ПВЛМ-Д

(1гр)

ЛДОР

(4гр.)

НСП-07

Мощность ламп в светильниках, В Уточненная удельная мощность

15

500

6,2

500

4,8

17,8

16,5

500

22,1

Вт

11,2 8,6 6,6 1,1 6,6 9,2

,Вт

70 3 18 42 42 19
11,9 1,5 9 6,7 6,7 9,5

Определяем расчётную нагрузку карьера

(8.15)

Полная расчётная мощность во многом зависит от мероприятий по компенсации реактивной мощности (если на карьере преобладает нагрузка от асинхронных двигателей). Для таких предприятий и средневзвешенный коэффициент мощности носят индуктивный характер

(8.16)

Т. к. средневзвешенный коэффициент мощности имеет ёмкостный характер, то применять мероприятия по компенсации реактивной мощности нет необходимости.

Выбор трансформаторов для карьера

Выбор типа, мощности и расположение подстанций должны обуславливаться величиной электрических нагрузок и размещением их на генеральном плане поверхности разреза.

Количество силовых трансформаторов на ГСП зависит от наличия в карьере электроприёмников 1-й и 2-й категорий. К 1-й категории относят водоотливные установки. При наличии на карьере электроприёмников первой категории на ГСП принимают к установке 2 трансформаторов одинаковой мощности.

Определяем расчётную величину мощности трансформатора

 (8.17)

где - коэффициент, учитывающий наличие на предприятии электроприёмников 1-й и 2-й категорий (=0,75…0,8);

- коэффициент совмещения максимума .


Таблица 8.2

Расчёт электрической нагрузки карьера „Карьер Восточный”

Потребитель электрической энергии Кол-во ед. Sтрi, КВА Рнi, кВт Sуст, КВА Руст, кВт Расчетные коэф-нты Расчетная нагрузка Тi, ч/год Годовой расход
Кср Соs φ Tg φ

Ррасч., кВт

Qрасч. , кВар

Wa*106 кВт, ч

Wp*106 кВарч

Электропотребители напряжением 6 кВт

1.Экскаватор ЭКГ-10 на добыче, двигатель 3 630 1890 0,65 0,85 -0,62 1228,5 -761,7 6000,0 7,4 -4,6
трансформа-тор 3 100 300 0,65 0,7 1,02 195,0 198,9 6240,0 1,2 1,2
2.Экскаватор ЭКГ-10 на вскрыше, двигатель 7 630 3150 0,63 0,85 -0,62 1984,5 -1953 6000,0 11,9 -11,7
трансформатор 7 100 500 0,63 0,7 1,02 315,0 510 6240,0 2 3,2

Итого с напряжением 6 кВт

 

 

 

 

 

 

3723

-2005,8

 

22,5

-11,9

Электропотребители низкого напряжения

3.Подстанции питающих установокПКТП-400/6/0,4 для СБШ-250МН 13 400 5200 0,7 0,7 1,02 3640,0 3712,8 7200,0 26,2 26,7
4.Насосы ЦНС180/170 21 119 2499 0,8 0,85 -0,62 1999,2 -1239,5 7900,0 15,8 -9,8
5.Осветительные установки с лампами ДКсТВ-50000 2 50 100 0,9 0,95 0,328 90,0 29,5 2000,0 0,180 0,059
6.Осветительные установки дороги 49 0,4 19,6 0,9 0,95 0,328 17,6 5,8 2000,0 0,035 0,012

Итого по низковольтным

 

 

 

 

 

 

5746,8

2508,6

 

42,2

17,0

Всего по карьеру

 

 

 

 

 

 

9469,8

502,8

 

64,7

5,1


Принимаем к установке на карьере две сборных комплектных трансформаторных подстанции блочного типа, СКТП –10000/35/6 с масляным трансформатором мощностью

Мощность принимаемого к установке трансформатора должна удовлетворять условию:

= (8.18)

 

Выбор ПКТП-6/0,4 кВ

Передвижные подстанции для питания низковольтных электроприёмников напряжением 0,4 кВ выбирают по двум условиям:

1)  возможность прямого пуска асинхронного двигателя с короткозамкнутым ротором;

2)  величина расчётной нагрузки.

Выбор силового трансформатора ПКТП-6/0,4 кВ по первому условию можно выполнить приближённо, руководствуясь следующими положениями: мощность наибольшего по величине двигателя с короткозамкнутым ротором в группе электроприёмников должна быть не меньше 30 % мощности  при редких пусках или меньше 20 % от  при частых пусках; если от подстанции получает питание один двигатель с короткозамкнутым ротором, то его мощность должна быть меньше 80 % от .

Выбор силового трансформатора ПКТП-6/0,4 кВ по второму условию определяют по величине расчётной мощности трансформатора

(8.19)

где  - номинальная мощность  потребителя, кВт;

 - групповой коэффициент спроса.

Принимаем к установке передвижную ПКТП-630/6/0,4 с масляным силовым трансформатором ТМ-630/6/0,4 мощностью

Расчёт электрической нагрузки приведён в таблице 8.2.

8.4 Расчет воздушных и кабельных ЛЭП

 

Определение расчётных токов

В разделе дипломного проекта приводим расчёт одной наиболее загруженной разветвлённой линии. Расчётные токи определяют по расчётным мощностям путём деления их на  и напряжение номинальное . Расчётные мощности находятся при помощи умножения номинальных мощностей на коэффициент спроса. Расчёт токов выполняется дважды: по средним коэффициентам спроса  определяют средние расчётные токи  длительного режима работы электроприемников; по максимальным коэффициентам спроса  определяют максимальные расчётные токи  кратковременного режима работы электроприемников – пусковые. Максимально расчётные токи определяют только для двигателей, а суммарный максимальный расчётный в линиях получают сответсвующим суммированием максимальных токов двигателей со средними токами трансформаторов.

Выбор сечений проводников

Сечения проводников воздушных и кабельных линий напряжением до и выше 1000В выбираем по нагреву средним расчётным током  с последующей проверкой:

1)  по экономической плотности среднего расчётного тока (для ЛЭП 6-35 кВ со средним сроком службы более 5 лет);

2)  по механической прочности;

3)  по допустимой потере напряжения, создаваемой максимальным расчётным током.

Выбор сечения проводников по нагреву сводится, к сравнению среднего расчётного тока  с длительно допустимыми токами нагрузки  приводят, для стандартных сечений.

Определяем экономически целесообразное сечение проводников

(8.20)

где - экономическая плотность тока, А/мм2.

Не подлежат проверке по экономической плотности тока ЛЭП с малым сроком службы (до 5 лет), к числу которых на разрезе относят передвижные воздушные и кабельные ЛЭП 6-10 кВ. Выбранные по нагреву и экономической плотности тока сечения проводников проверяют по механической прочности. Карьерные воздушные линии напряжением 6-10 кВ относят к линиям 2-го класса.

Наибольшее сечение проводников из выбранных по нагреву, экономической плотности тока и механической прочности проверяют по допустимой потере напряжения при максимальном расчётном токе.

(8.21)

где - номинальное напряжение, В;

- длина участка рассчитываемой линии, км;

 - соответственно активное и индуктивное сопротивление одного километра линии, Ом/км;

 - тригонометрические функции, соответствующие сдвигу фазы максимального расчётного тока относительно напряжения.

Проверка кабеля для ЛЭП на термическую устойчивость от воздействия токов короткого замыкания

(8.22)

где  - установившееся значение тока короткого замыкания, кА;

- приведённое время действия тока короткого замыкания, с; ();

 - расчётный коэффициент, определяемый допустимой температурой нагрева (для кабелей до 10 кВ с медными жилами , с алюминиевыми жилами ).

При выборе стандартного сечения жил кабелей по термической устойчивости следует принять ближайшее сечение относительно расчетного .

Выбираем низковольтные кабели для буровых станков по расчётному току

(8.23)

Расчёты распределительной сети напряжением 6 кВ, приведены в таблице 9.2.

Проверка сети по условию пуска сетевого двигателя

Расчетная схема сети строится из следующих условий:

экскаватор ЭКГ-10 расположен на наиболее удаленном расстоянии от источника питания;

остальные электроприемники не работают.

Определяем индуктивное сопротивление трансформатора:

 Ом. (8.24)

где Uk – напряжение короткого замыкания трансформатора;

Ux – напряжение холостого хода трансформатора;

Sнт – номинальная мощность трансформатора.

Определяем сопротивление участка воздушной линии:

 Ом. (8.25)

где 1кл – длина кабельной линии, 0,250 км;

1вл – длина воздушной линии, 2 км.

Определяем сопротивление участка кабельной линии:

 Ом (8.26)

Определяем сопротивление сети от ТП до экскаватора:

Хвн = Хт + Хкл + Хвл = 0,518 +0,8 + 0,02 = 1,338 Ом.

Определяем потерю напряжения в сети от прочей нагрузки:

. (8.27)

где Ррасч.пр- расчётная нагрузка прочих электроприёмников (мощностью более 500 кВт), подключённых к сети , кВт.

Определяем напряжение на зажимах двигателя в момент его пуска:

 (8.29)

где Uх- напряжение на клеммах трансформатора без нагрузки, кВ; - потеря напряжения от прочей нагрузки в общих с пусковым двигателем элементах сети, кВ.

Определяем кратность напряжения на зажимах двигателя в момент пуска:

(8.30)

Условие  для нормального запуска сетевого двигателя экскаватора ЭКГ-10 выполняется.


Информация о работе «Проект разработки Олимпиадинского золоторудного месторождения на примере участка Восточный»
Раздел: Геология
Количество знаков с пробелами: 162260
Количество таблиц: 49
Количество изображений: 5

Похожие работы

Скачать
118497
10
3

... , Папуа-Н. Гвинея). В России обеспеченность выявленными запасами золота даже при увеличении его добычи составляет несколько десятилетий. В отличии от других стран наибольшее количество известных крупнейших месторождений золота России приурочено к миогеосинклинальным складчатым областям. Все они относятся к прожилково-вкрапленным рудам. Общие запасы в них оцениваются в 2600 т., из которых пока ...

Скачать
234408
17
9

... динамики курса доллара и цен на золото. Разнонаправленность движения этих показателей обусловлена историческим ходом конкурентной борьбы, которую вели между собой доллар и золото за право верховенства в рамках мировой валютной системы. Следовательно, факторы, вызывающие снижение курса доллара (прежде всего, ухудшение общеэкономической ситуации в США), в той или иной мере могут стимулировать рост ...

Скачать
160501
18
10

... , а также из некоторых других материалов высокохудожественной обработки. Производство является также одним из важнейших факторов, влияющих на формирование потребительских свойств и качество ювелирных товаров. По способу производства ювелирные изделия бывают индивидуального и массового (серийного) изготовления. Основными процессами производства ювелирных изделий являются следующие: заготовка ...

Скачать
157406
16
10

... нового банковского рынка) связано с формированием холдингов, способных гибко маневрировать как природными, так и финансовыми ресурсами, обеспечивая устойчивость своего финансового положения при разной конъюнктуре рынка драгоценных металлов и камней. Список литературы 1.  Федеральный Закон РФ от 26 марта 1998 г. 41-ФЗ "О драгоценных металлах и драгоценных камнях". 2.  Федеральный Закон РФ ...

0 комментариев


Наверх