2.2 Система токоведущих проводников. Система заземления

Питание электроустановки здания предусматривается на напряжение 380/220 В переменного тока от трансформаторной подстанции. Система токоведущих проводников для электроприемников, относящихся к силовому электрооборудованию – трехфазная пятипроводная. Питающая линия от подстанции – кабельная.

Для проектируемого объекта принимается система заземления типа ТN, подсистема – TN-S, характеризующаяся тем, что от трансформаторной подстанции до ввода в здание предусматривается трехфазная пятипроводная система проводников (три фазы плюс PE – защитный N- рабочий нулевые проводники). На вводе в здание во вводном щите ВРУ предусматривается главная заземляющая шина.

2.3 Определение места расположения электрического ввода в здание. Предварительный выбор ВРУ

Анализ, установленных электроприемников показывает, что электроприемники рассредоточены по зданию по осям А и В. Электрощитовая располагается по оси здания В и построена исходя из условий расположения центра нагрузок, комплектности расположения электрооборудования и места расположения ввода.

Предварительно выбираем к установке вводно-распределительное устройства ВРУ-1 и распределительный пункт типа «ШР11» с предохранителями на 8 отходящих линий.


2.4 Выполнение структурной схемы электрических сетей здания

Для приема и распределения электроэнергии в свинарнике предусматривается магистральная схема электрической сети. После анализа ЭП здания все электроприемники с учетом их расположения и принадлежности к технологическим линиям разбиты на группы. Принимаем, что электроприемники запитываются от узла питания (ШР), установленного в электрощитовой.

Принимаем, что управление электроприемниками осуществляется с использованием щитов управления (ЩУ), устанавливаемых в удобных местах, с точки зрения технологического процесса.

Ввод в свинарник осуществляется двумя линиями (так как свинарник относится к потребителям второй категории по надёжности электроснабжения, перерыв в электроснабжении допускается не дольше чем на время, необходимое для включения резерва) с возможностью перевода питания на одну линию при выходе из строя питающей линии. Структурная схема распределительной сети показана на рис. 2.1.


Принципиальные схемы разрабатываются на основании структурных схем, они выполняются в соответствии с ГОСТ21.613-88, по форме приведенной в графической части курсового проекта. Электрические сети подразделяют на питающую и распределительную.

Вначале выполняется схема распределительной сети, а затем питающей. Начинают работу принципиальной схемы с вычерчивания линий шин РП, записывается информация по данному РП. Все аппараты и устройства обозначаются отрезками прямых линий. Принципиальная схема приведена в графической части.

2.6 Принципиальная схема питающей сети

При выполнении схемы питающей сети необходимо учитывать категорию потребления по надежности электроснабжения. Данный объект относится ко второй категории электроснабжения. Исходя из вышеуказанного, здание питается по двум кабельным линиям, поэтому на вводе в здание устанавливаем вводное распределительное устройство ВРУ-1.

QS1

 

QS2

 
 
Рис. 2.2 Структурная схема ВРУ-1.

3 РАСЧЕТ ЭЛЕКТРИЧЕСКИХ НАГРУЗОК

3.1 Цель расчета и обоснование принятого метода расчета

Определение электрических нагрузок – важнейший этап проектирования. Прежде, чем приступить к расчёту электрических нагрузок проводим анализ и изучение электроприёмников.

Расчёт нагрузок будем вести методом суточного графика электрических нагрузок. Принимаем данный метод по той причине, что нам известно время включения и отключения всех ЭП, находящихся в свинарнике. Обладая такими данными, расчет электрических нагрузок значительно упрощается, и сводится к построению технологического графика и последующего отыскания величин нагрузок и энергопотребления коровника на данном графике.

3.2 Определение основных расчетных параметров – расчетной мощности на вводе, коэффициента мощности, полной мощности

Расчет электрических нагрузок по методу суточного графика ведется на основании руководящего технического материала «Указания по расчету электрических нагрузок» РТМ 36.18.32.4-92.

График электрических нагрузок строится для определения расчётной мощности проектируемого здания Рр, а через эту величину несложно определить значение расчетного тока Iр и другие необходимые показатели.

Перед построением графика выделим электроприёмники, длительно работающие. К ним относятся – освещение (рабочее и дежурное), вентиляция и отопление. Затем определим времена включения и отключения электроприёмников, работающих периодически.

Число часов работы двух кормораздатчиков определим по формуле [4]:

(3.1)

где  - количество выдаваемого корма за сутки, т;

;

 - количество голов (по заданию );

 - производительность кормораздатчика, , по табл. 12.5 [4].

Вычисленное время  распределяем по времени суток (исходя и принятого трёхразового кормления). Результаты заносим в табл. 3.1 в виде горизонтальных отрезков, соответствующих времени работы электрооборудования. Потребляемую мощность электроприемников (ЭП) определяем по формуле:

, (3.2)

где  - установленная (номинальная) мощность ЭП, кВт;

 - КПД ЭП, %;

 - коэффициент использования;

Подсчитывается потребляемая мощность Рпотр и график строится по величинам этой мощности. График строят в координатах «Р» и «t» (рис. 3.1).

Классический способ построения графика заключается в последовательном суммировании электрических нагрузок пооперационно в соответствии с технологическим процессом объекта.

В целях упрощения построения графика начинаем построение с постоянно действующих нагрузок (3 и 4). Далее надстраиваем нагрузки по уменьшению времени их работы в сутки.

Вначале по графику определяется максимальная пиковая мощность электроустановки Рм =23,3 кВт. На графике три участка, где величины Рм одинаковы.

Для определения величины расчётной мощности Рр выявляют длительность действия Рм. При этом, в формировании максимума нагрузки участвуют 2 нагрузки. На графике они отражены ступенями в пределах 14-и минутного участка графика.

Расчетная мощность рассчитывается как среднеквадратичная величина мощностей Рi за смену и определяется по формуле:

, (3.3)

 где n – число ступеней графика, входящих в рассчитываемый 14-ти минутный участок времени ГЭН;

Pi – мощность соответствующая i -й ступени.

ti - длительность действия Pi .

Расчет электропотребления за смену (сутки) – W.

Электропотребление любой электроустановки есть произведение её мощности на время потребления, то есть

W=P.t (кВт.ч).

Величина W соответствует (равна) площади фигуры, очерченной графиком.

При определении W нагрузки электроприёмников, работающих в автоматическом режиме и принятых при построении ГЭН, как постоянно действующих, необходимо принимать с коэффициентом равным 0,4….0,8 (в зависимости от характера ЭП) для учёта их фактического не непрерывного, а периодического действия.

Рассчитывается величина коэффициента мощности электроустановки здания сos j.

Этот коэффициент определяется за период действия максимальной расчетной мощности. Величину cosj находят как средневзвешенное значение коэффициентов мощности отдельных нагрузок, участвующих в формировании Рр.

*φ = φ ср.взв. =, (3.4)

где Рi – номинальная мощность ЭП, участвующих в формировании максимума нагрузки;

 tgj – коэффициент реактивной мощности ЭП, участвующих в формировании максимума нагрузки (определяется через cos j по паспортным данным ЭП);

n – количество ЭП, участвующих в формировании максимума нагрузки.

Собственно расчет следует ниже:

1. Максимальная нагрузка, Рм = 23,3 кВт.

2. Расчетная нагрузка Рр.

Так как Рм длится менее получаса, то Рр находим через Рэкв , или через среднеквадратичную за тридцатиминутный промежуток времени. На участке получасового максимума действуют две нагрузки (i =1):

Р1=Рм=23,3 кВт (t1=14 мин) и Р2=(Pпотр2+ Pпотр3+ Pпотр4)=

=8,1+5,6+5=18,7 кВт. (t2=60 мин).

Тогда .

3. Установленная мощность определяется суммированием мощностей всех электроприемников, имеющихся на объекте.

Ру = 14,2+6+8,8+11,1=30,1 кВт

4. Электропотребление за смену (сутки) определяют через геометрическую площадь графика:

электробезопасность электрический схема заземление

W = Sгр. S гр. = S1+S2+S3+S4

Sгр.= 9,6 ·14·3+ 8,1 · 24·0,5 + 5,6·24·0,5+ 5·60·3= 1468

Таким образом электропотребление составит Wсут = 1468кВт . час

( здесь в первом слагаемом для автоматизированных ЭП принят к = 0,5).

5. Определяется средневзвешенное значение коэффициента мощности нагрузок, участвующих в формировании максимума (той электрической нагрузки, которая определила величину Рр):

φср.взв.==0,85;

Значение величины tg j=0,59 определяем через каталожное значение cos j=0,86 для конкретных электроприемников, участвующих в формировании максимума нагрузки.

Учитывая, что в формировании максимума нагрузки участвуют все нагрузки объекта, подсчитываем величину å Рi :

å Рi = Ру - Р2 =34,4 кВт.


Тогда .


4 ВЫБОР ОБОРУДОВАНИЯ, АППАРАТОВ УПРАВЛЕНИЯ И ЗАЩИТЫ

4.1 Выбор коммутационных аппаратов

Для распределительного пункта на вводе выберем рубильник ВР32-37В (прил. Д табл. 1 [3]). Произведем проверку выбранного рубильника.

По номинальному напряжению рубильника:

Uн.р ≥ Uн.уст = 380 B  (4.1)

По номинальному току рубильника:

Iн.р ≥ Iр.л = 14,82 ∙ 2 + 6,14 ∙ 2 + 4,63 ∙ 4 + 0,94 ∙ 30 = 88,64 А (4.2)


Информация о работе «Проектирование энергооборудования свинарника для выращивания и откорма 500 свиней в год»
Раздел: Физика
Количество знаков с пробелами: 27138
Количество таблиц: 4
Количество изображений: 2

Похожие работы

Скачать
125062
21
6

... На 5 листе графической части приведена принципиальная электрическая схема управления микроклиматом. 3. Безопасность жизнедеятельности   3.1 Требования безопасности при монтаже энергооборудования свинарника на 1200 голов При поступлении электродвигателей, электрических аппаратов и другого энергооборудования на ферму его необходимо очистить от пыли и консервирующих смазочных материалов. ...

0 комментариев


Наверх