2. Научные школы (течения) в синергетики

В синергетике к настоящему времени сложилось уже несколько научных школ. Эти школы окрашены в те тона, которые привносят их сторонники, идущие к осмыслению идей синергетики с позиции своей исходной дисциплинарной области, будь то математика, физика, биология или даже обществознание.

В числе этих школ – брюссельская школа, основанная лауреатом Нобелевской премии по химии за 1977 г. Ильей Романовичем Пригожиным (из числа потомков русских эмигрантов, покинувших Россию после революционных событий 1917 г.), разрабатывающего теорию диссипативных структур, раскрывающую исторические предпосылки и мировоззренческие основания теории самоорганизации.

Интенсивно работает также школа Г.Хакена. Он объединил большую группу ученых вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет уже более 60 томов.

Классические работы, в которых развивается математический аппарат для описания катастрофических синергетических процессов, принадлежат перу российского математика В.И. Арнольда и французского математика Р. Тома. Эту теорию называют по-разному: теория катастроф, особенностей или бифурикаций.

Среди российских ученых следует упомянуть также академика А.А. Самарского и С.П. Курдюмова. Их школа разрабатывает теорию самоорганизации на базе математических моделей и вычислительного эксперимента на дисплеях компьютеров. Эта школа выдвинула ряд оригинальных идей для понимания механизмов возникновения и эволюции относительно устойчивых структур в открытых (нелинейных) средах (системах).

Широко известны также работы академика Н. Н. Моисеева, разрабатывающего идеи универсального эволюционизма и коэволюции человека и природы, работы биофизиков, членов-корреспондентов РАН М. В. Волькенштейна и Д. С. Чернавского.

Такое разнообразие научных школ, направлений, идей свидетельствует о том, что синергетика представляет собой скорее парадигму, чем теорию. Это значит что она олицетворяет определенные достаточно общие концептуальные рамки, немногочисленные фундаментальные идеи, общепринятые в научном сообществе, и методы (образцы) научного исследования.

3. Основные идеи, предмет и объекты синергетики

«Краеугольным камнем» синергетики являются три основные идеи: неравновесность, открытость и нелинейность.

Состояние равновесия может быть устойчивым (стационарным) и динамическим. О стационарном равновесном состоянии говорят в том случае, если при изменении параметров системы, возникшем под влиянием внешних или внутренних возмущений, система возвращается в прежнее состояние. Состояние динамического (неустойчивого) равновесия имеет место тогда, когда изменение параметров влечет за собой дальнейшие изменения в том же направлении и усиливается с течением времени. Важно подчеркнуть, что такого рода устойчивое состояние может возникнуть в системе, находящейся вдали от стационарного равновесия.

Длительное время в состоянии равновесия могут находиться лишь закрытые системы, не имеющие связей с внешней средой, тогда как для открытых систем равновесие может быть только мигом в процессе непрерывных изменений. Равновесные системы не способны к развитию и самоорганизации, поскольку подавляют отклонения от своего стационарного состояния, тогда как развитие и самоорганизация предполагают качественное его изменение.

Неравновесность можно определить как состояние открытой системы, при котором происходит изменение ее макроскопических параметров, то есть ее состава, структуры и поведения. В своей статье «Философия нестабильности» И. Пригожин пишет: «Наше восприятие природы становится дуалистическим, и стержневым моментом в таком восприятии становится представление о неравновесности. Причем неравновесности, ведущей не только к порядку и беспорядку, но открывающей также возможность для возникновения уникальных событий, ибо спектр возможных способов существования объектов в этом случае значительно расширяется (в сравнении с образом равновесного мира)».

Открытость – способность системы постоянно обмениваться веществом (энергией, информацией) с окружающей средой и обладать как «источниками» - зонами подпитки ее энергией окружающей среды, действие которых способствует наращиванию структурной неоднородности данной системы, так и «стоками» – зонами рассеяния, «сброса» энергии, в результате действия которых происходит сглаживание структурных неоднородностей в системе. Открытость (наличие внешних «источников» («стоков»)) является необходимым условием существования неравновесных состояний, в противоположность замкнутой системе, неизбежно стремящейся, в соответствии со вторым началом термодинамики, к однородному равновесному состоянию.

Нелинейностью называется свойство системы иметь в своей структуре различные стационарные состояния, соответствующие различным допустимым законам поведения этой системы. Всякий раз, когда поведение таких объектов удается выразить системой уравнений, эти уравнения оказываются нелинейными в математическом смысле. Математическим объектам с таким свойством соответствует возникновение спектра решений вместо одного единственного решения системы уравнений, описывающих поведение системы. Каждое решение из этого спектра характеризует возможный способ поведения системы. В отличие от линейных систем, подсистемы которых слабо взаимодействуют между собой и практически независимо входят в систему, то есть обладают свойством аддитивности (целая система сводима к сумме ее составляющих), поведение каждой подсистемы в нелинейной системе определяется в зависимости от координации с другими. Система нелинейна, если в разное время, при разных внешних воздействиях ее поведение определяется различными законами. Это создает феномен сложного и разнообразного поведения, не укладывающегося в единственную теоретическую схему. Из этой поведенческой особенности нелинейных систем следует важнейший вывод по поводу возможности из прогнозирования и управления ими. Эволюция поведения (и развития) данного типа систем сложна и неоднозначна, поэтому внешние или внутренние воздействия могут вызвать отклонения такой системы от ее стационарного состояния в любом направлении. Одно и то же стационарное состояние такой системы при одних условиях устойчиво, а при других – не устойчиво, т.е. возможен переход в другой стационарное состояние.

Нелинейность также рассматривается как необычная реакция на внешние воздействия, когда «правильное» воздействие оказывает большее влияние на эволюцию системы, чем воздействие более сильное, но организованное неадекватно ее собственным тенденциям. Уточняя этот момент, скажем, что важным достижением синергетики является открытие механизма резонансного возбуждения. Оказывается, что система, находящаяся в неравновесном состоянии, чутка к воздействиям, согласованным с ее собственными свойствами. Поэтому флуктуации во внешней среде оказываются не «шумом», а фактором генерации новых структур. Малые, но согласованные с внутренним состоянием системы внешние воздействия на нее могут оказаться более эффективными, чем большие. Нелинейные системы демонстрируют неожиданно сильные ответные реакции на релевантные их внутренней организации, резонансные возмущения.

В понятии нелинейности имплицитно заложено существование потенциальности как свойства (характеристики) данного типа систем. Качественно разные состояния одной и той же нелинейной системы альтернативны, то есть не могут актуально существовать в одной и той же системе одновременно. В тот момент, когда соответствующие определенному качеству системы стационарное состояние существует актуально (проявлено), то соответствующее другим качествам стационарные состояния существуют лишь потенциально, вне ее пространственно-временной определенности, так как могут быть актуализированы только при иных условиях.

В современной физике, в частности, в квантовой теории поля, находят свое эмпирическое приложение теоретические конструкции, в которых фиксируется единство потенциальной и актуализированной реальности. Сущность поля в квантовой теории как фундаментального физического объекта составляют виртуальные процессы и виртуальные состояния физических объектов, а также условия их актуализации.

Понятие нелинейность начинает использоваться все шире, приобретая мировоззренческий смысл. Идея нелинейности включает в себя многовариантность, альтернативность выбора путей эволюции и ее необратимость. Нелинейные системы испытывают влияние случайных, малых воздействий, порождаемых неравновесностью.

Синергетика изучает два типа структур:

1) Так называемые диссипативные структуры, возникающие в процессе самоорганизации, для осуществления которых необходим рассеивающий (диссипативный) фактор. Здесь более важна роль стоков. Такие структуры тяготеют к стационарному состоянию, они как бы застывают на стоках. Диссипативные структуры появляются в открытых колебательных системах с сильной внешней подпиткой. Запасенная в них энергия способна высвобождаться в частности при поступлении в систему слабых возбуждений (флуктуаций), а отклик системы на это возбуждение может быть непредсказуемо сильным. Диссипативные структуры «живут» (в системном смысле) за счёт использования отторгнутой энергии внешней среды для собственных нужд.

Открытая нелинейная система в ситуации критической неравновесности способна порождать «чудо создания порядка из хаоса», менять сам тип своего поведения. В ней могут формироваться новые динамические состояние, названные И. Пригожиным диссипативными структурами. Если размазывающий процесс диссипации (диффузия, молекулярный хаос) ведет равновесную систему к хаосу, то в неравновесных системах он приводит, напротив, к возникновению новых структур, так как устраняет все нежизненные, неустойчивые состояния. «Диссипативность - фактор «естественного отбора», разрушающий все, что не отвечает тенденциям развития, «молоток скульптора», которым тот отсекает все лишнее от глыбы камня, создавая скульптуру»[2].

В диссипативной структуре между частицами устанавливаются дальнодействующие корреляции, меняется тип поведения - частицы начинают вести себя согласованно, когерентно, «как по команде» происходит синхронизация пространственно разделенных процессов. Порядок в синергетике понимается как макроскопическая упорядоченность при сохранении микроскопической молекулярной разупорядоченности, то есть порядок на макроуровне вполне мирно уживается с хаосом на микроуровне.

Возникновение диссипативных структур носит пороговый характер. Неравновесная термодинамика связала пороговый характер с неустойчивостью, показав, что новая структура всегда является результатом раскрытия неустойчивости в результате флуктуаций. Флуктуации – движения элементов микроуровня, обычно расцениваемые как случайные и не составляющие интереса для исследователя. Флуктуации бывают внутренние (внутрисистемные) и внешние (микровозмущения среды). В зависимости от своей силы флуктуации, воздействующие на систему, могут иметь совершенно разные для нее последствия. Если флуктуации открытой системы недостаточно сильны, система ответит на них возникновением сильных тенденций возврата к старому состоянию, структуре или поведению. Если флуктуации очень сильны, система может разрушиться. И, наконец, третья возможность заключается в формировании новой диссипативной структуры и изменении состояния, поведения и/или состава системы.

Любая из описанных возможностей может реализоваться в так называемой точке бифуркации, вызываемой флуктуациями, в которой система испытывает неустойчивость. Точка бифуркации представляет собой переломный, критический момент в развитии системы, в котором она осуществляет выбор пути; иначе говоря, это точка ветвления вариантов развития, точка, в которой происходит катастрофа. Термином «катастрофа» в концепциях самоорганизации называются качественные, скачкообразные изменения, возникающие при плавном изменении внешних условий. Просканировав флуктуационный фон, система решает, какой тип развития избрать (какую флуктуацию закрепить). Проводя аналогии с психологией, можно сказать, что в точке бифуркации система находится в состоянии импринтной уязвимости, где флуктуация импринтирует («впечатывает») новое направление эволюции.

В середине века Арнольд Тойнби, анализируя исторические судьбы различных цивилизаций, обращал внимание на точки бифуркации, где выбор пути (флуктуации) на несколько веков определял ход развития огромных государств. Ему принадлежит и термин "альтернативная история" для нетрадиционного анализа, имеющего дело не с одной реализовавшейся траекторией цивилизации, государства или этноса, а с полем возможностей. В противовес Тойнби, В.С. Капустин приводит интересную метафору: «Бифуркационный подход в исследовании социокультурных явлений заставляет смотреть на мир не как на своеобразный музей, в котором сохраняется каждый бит информации, а как на процессы постоянно разрушающие старую и генерирующие новую структуру и информацию»[3].

Потенциальных траекторий развития системы много и точно предсказать, в какое состояние перейдет система после прохождения точки бифуркации, невозможно, что связано с тем, что влияние среды носит случайный характер. С математической точки зрения, неустойчивость и пороговый характер самоорганизации связаны с нелинейностью уравнений. Как уже было сказано, для линейных уравнений существует одно стационарное состояние, для нелинейных - несколько. Таким образом, пороговый характер самоорганизации связан с переходом из одного стационарного состояния в другое.

2) Другой тип структур – нестационарные (эволюционирующие) структуры, возникающие за счет активности нелинейных источников энергии. Здесь структура – это локализованный в определенных участках среды процесс, имеющий определенную геометрическую форму и способный развиваться, трансформироваться или же переноситься в среде с сохранением формы.

Подобные структуры изучаются российской синергетической школой. Следует отметить, что фактически эти два типа структур являются различными этапами развития процессов в открытых нелинейных средах.

Объектом синергетики являются системы, которые удовлетворяют, по меньшей мере, двум условиям:

·  они должны быть открытыми;

·  они должны быть существенно неравновесными.

Но именно такими являются большинство известных нам систем. Изолированные системы классической термодинамики – это определенная идеализация, в реальности такие системы исключение, а не правило. Сложнее со всей Вселенной в целом: если считать её открытой системой, то что может служить её внешней средой? Современная физика полагает, что такой средой для нашей вещественной Вселенной является вакуум.

 


Информация о работе «Синергетика как новое научное направление»
Раздел: Биология
Количество знаков с пробелами: 48665
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
25232
0
0

... методов из области точного естествознания в области, традиционно считавшиеся безраздельными владениями далеких от математики гуманитариев, вскрыли один из наиболее плодотворных аспектов синергетики и существенно углубили её понимание. 8. Синергетическая концепция самоорганизации 1) Объектами исследования являются открытые системы в неравновесном состоянии, характеризуемые интенсивным (потоковым, ...

Скачать
49019
0
0

... данной среде структур. Возможен также путь направленного морфогенеза - спонтанного нарастания сложности в открытых нелинейных системах. Последний представляет собой некий аналог биологических процессов морфогенеза и "штамповки" типа редупликации ДНК. 2.8 Законы объединения сложных структур Синергетика позволяет выявить законы коэволюции сложных "разновозрастных", развивающихся в разном темпе ...

Скачать
41569
0
0

... перспективным направлением исследования социальных процессов и занимает достойное место в области социального мышления. Список использованных источников 1. Аршинов В.И. Синергетика как феномен постнеклассической науки / В.И. Аршинов. - М: ИФРАН, 1999. – 203 с. 2. Бевзенко Л. Социальная самоорганизация. Синергетическая парадигма: возможности социальных интерпретаций / Л. Бевзенко. — Киев., ...

Скачать
55200
1
1

... понятийный аппарат друг друга. Это особенно характерно для синергетики, поэтому концепцию Брюссельской школы можно рассматривать как синергетическую. Синергетика и теория изменений составили фундамент концепций самоорганизации, на котором уже построены многие физические, химические, биологические теории. Прежде чем перейти к непосредственному рассмотрению самоорганизационных концепций развития, ...

0 комментариев


Наверх