Войти на сайт

или
Регистрация

Навигация


Городская конференция учащихся муниципальных образовательных учреждений, занимающихся учебно-воспитательной деятельностью

«Шаги в науку»

Научное общество учащихся «Поиск»

Муниципального образовательного учреждения

«Средняя общеобразовательная школа №86 г.Омска»

Научное направление: «Математика»

Уравнения, содержащие параметр

Соколова Александра Михайловна

ученица 10 класса МОУ

«СОШ №86 г.Омска»

Руководитель: Дощанова Тиштых Мухановна,

учитель математики

Омск 2011


Содержание

Введение

1. Знакомство с параметрами

1.1 Решение уравнений первой степени с одним неизвестным

1.2 Решение линейных уравнений с модулем

1.3 Решение квадратных уравнений

2. Примеры решений уравнений с параметром из ГИА и ЕГЭ части С

Заключение


Введение

В настоящее время различные задачи с параметрами – это одни из самых сложных заданий на экзаменах. А ведь в экзаменационных заданиях они есть как за 9 класс, так и за 11, но многие ученики даже не берутся решать эти задания, так как заведомо считают, что не смогут их решить, даже не попробовав. А на деле, чтобы справиться с ними, нужно всего лишь проявить логику, включить смекалку и ничего сложного не окажется.

Свою работу я захотела посвятить заданиям с параметрами, так как именно они вызывают у большинства учеников наибольшие затруднения. Мне самой нужно будет сдавать ЕГЭ, и поэтому, обращаясь к этой теме, я хотела бы облегчить и себе, и своим слушателям, тяжесть решения задач с параметрами.

Цель моей работы - научиться решать уравнения с параметрами и познакомить учеников с методами решения подобных заданий.

Я поставила перед собой следующие задачи:

1. Самой научиться решать уравнения с параметрами различных видов.

2. Познакомить учащихся с разными методами решения подобных уравнений.

3. Вызвать интерес учеников к дальнейшему изучению задач с параметрами.

В моей работе я рассмотрю следующие виды заданий с параметрами:

1) решение уравнений первой степени с одним неизвестным;

2) решение линейных уравнений с модулем;

3) решение квадратных уравнений.

уравнение параметр неизвестное модуль


1. Знакомство с параметрами

Для начала, стоило бы пояснить, что собой представляют уравнения с параметрами, которым посвящена моя работа. Итак, если уравнение (или неравенство), кроме неизвестных, содержит числа, обозначенные буквами, то оно называется параметрическим, а эти буквы – параметрами.

Если параметру, содержащемуся в уравнении (неравенстве), придать некоторое значение, то возможен один из двух следующих случаев:

1)  получится уравнение (неравенство), содержащее лишь данные числа и неизвестные (т.е. без параметров);

2)  получится условие, лишенное смысла.

В первом случае значение параметра считается допустимым, во втором – недопустимым.

Решить уравнение (неравенство), содержащее параметр, - это значит, для каждого допустимого значения параметра найти множество всех значений данного уравнения (неравенства).

К сожалению, не редко при решении примеров с параметрами многие ограничиваются тем, что составляют формулы, выражающие значения неизвестных через параметры. Например, при решении уравнения  переходят к у равнению ; при m=записывают единственное решение . Но ведь при m= -1 – бесчисленное множество решений, а при m=1, решений нет.

Пример 1. Решить уравнение .

Сразу видно, что при решении этого уравнения стоит рассмотреть следующие случаи:

1)  a=1, тогда уравнение принимает вид  и не имеет решений;

2)  при а=-1 получаем и, очевидно, х любое;

3)  при  .

Ответ: при a=1 решений нет, при а=-1 х любое, при  .

Пример 2. Решить уравнение

Очевидно, что , а , то есть х=b/2, но , то есть 2b/2, b4.

Ответ: при b


Информация о работе «Уравнения, содержащие параметр»
Раздел: Математика
Количество знаков с пробелами: 12560
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
69553
1
0

... точек координатной оси. Занятие № 4. Тема: Аналитический метод. Метод «ветвлений». Цель занятия: познакомить учеников с основным методом решения уравнений, содержащих параметр. Литература для учителя: см. [1] , [5], [6], [7], [14] Литература для ученика: см. [3] Краткое содержание: рассмотрение различных значений, принимаемых параметром. Упрощение уравнения и приведение уравнения к произведению ...

Скачать
24636
0
0

... знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, т. е. числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы исключить посторонние корни, требуется находить значение параметра, обращающее общий знаменатель в нуль, т. е. решать соответствующие ...

Скачать
54343
1
32

... функция является знакопостоянной. Вычисляя, например, , получаем, что функция принимает только положительные значения. Ответ. . Метод интервалов позволяет решать более сложные уравнения и неравенства с модулями, но в этом случае он имеет несколько иное назначение. Суть состоит в слудующем. Находим корни всех подмодульных выражений и разбиваем числовую ось на промежутки знакопостоянства этих ...

Скачать
98604
5
19

... проведении исследования были решены следующие задачи: 1)  Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: ·в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном ...

0 комментариев


Наверх