1.3 Геохимия титана

Титан по распространенности химических элементов в земной коре занимает девятое место. Среднее содержание титана в земной коре составляет, по А.П Виноградову, 0,45%.

В природе пять стабильных изотопов: 46Ti (7,95%), 47Ti (7,75%), 48Ti (73,45%), 49Ti (5,51%), 50Ti (5,34%).

Больше всего титана содержится в основных породах так называемой "базальтовой оболочки" (0,9%), меньше в породах "гранитной оболочки" (0,23%) и ещё меньше в ультраосновных породах (0,03%) и др. К горным породам, обогащенным титаном, относятся пегматиты основных пород, щелочные породы, сиениты и связанные с ними пегматиты и другие породы. В биосфере титан в основном рассеян. В морской воде его содержится 1-10-7%; Титин - слабый мигрант.

В природных условиях он встречается главным образом в четырехвалентном состоянии, что определяет повышенную устойчивость его кислородных соединений. Двухвалентный титан в породах встречается очень редко. Присутствие TiO +3 отмечено в силикатных минералах (пироксенах, амфиболах, биотите). Ильмените и в редком минерале- армоколите. Омилит- собственный минерал трехвалентного титана также встречается очень редко. Свободный титан в природе не наблюдается.

Титан относится к литофильным элементам - он не образует природных сульфидов и арсенидов, а также солей слабых кислот, так как сам является слабым основанием. Для гидротермальных образований титан мало характерен, в виде летучих галоидных и сернистых соединений (типа TiCl4 ) установлен до 5, 52 мг/л в природных конденсатах вулканических газов.

В условиях гипергенеза титан малоподвижен. В поверхностных условиях земной коры он в виде устойчивых минеральных разностей перемещается механически-водными потоками, частично ветром, а не в форме истинных растворов. В песках рутил и ильменит остаются практически неизменными. В глинах они обычно присутствуют в виде пелитовых частиц.

Титан в организме. Титан постоянно присутствует в тканях растений и животных. В наземных растениях его концентрация - около 10-4%, в морских - от 1,2 ×10-3 до 8 ×10-2%, в тканях наземных животных - менее 2 ×10-4%, морских - от 2 ×10-4 до 2 ×10-2%. Накапливается у позвоночных животных преимущественно в роговых образованиях, селезёнке, надпочечниках, щитовидной железе, плаценте; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление титана с продуктами питания и водой составляет 0,85 мг. Относительно малотоксичен.


2. Свинец - Pb

2.1 Общие сведения и история открытия элемента свинец

Свинец (англ. Lead, франц. Plomb, нем. Blei) известен с III - II тысячелетия до н.э. в Месопотамии, Египте и других древних странах, где из него изготовляли большие кирпичи (чушки), статуи богов и царей, печати и различные предметы быта. Из свинца делали бронзу, а также таблички для письма острым твердым предметом. В более позднее время римляне стали изготовлять из свинца трубы для водопроводов. В древности свинец сопоставлялся с планетой Сатурн и часто именовался сатурном. В средние века благодаря своему тяжелому весу свинец играл особую роль в алхимических операциях, ему приписывали способность легко превращаться в золото. Вплоть до XVII в. свинец нередко путали с оловом. На древнеславянских языках он именовался оловом; это название сохранилось в современном чешском языке (Olovo).Древнегреческое название свинца , вероятно, связано с какой-либо местностью. Некоторые филологи сопоставляют греческое название с латинским Plumbum и утверждают, что последнее слово образовалось из mlumbum. Другие указывают, что оба эти названия произошли от санскритского bahu-mala (очень грязный); в XVII в. различали Plumbum album (белый свинец, т. е. олово) и Plumbum nigrum (черный свинец). В алхимической литературе свинец имел множество названий, часть которых принадлежала к тайным. Греческое название алхимики иногда переводили как plumbago - свинцовая руда. Немецкое Blei обычно производят не от лат. Plumbum, несмотря на явное созвучие, а от древнегерманского blio (bliw) и связанного с ним литовского bleivas (свет, ясный), но это мало достоверно. С названием Blei связано англ. Lead и датское Lood.

Свинец (Plumbum) Рb — элемент IV группы 6-го периода периодической системы Д. И. Менделеева, номер 82, атомная масса 207,19.

Самородный свинец встречается редко, наиболее важный минерал — галенит (свинцовый блеск) PbS. Свинец — мягкий, ковкий и пластичный металл серого цвета. На воздухе быстро покрывается тонким слоем окиси, защищающим его от дальнейшего окисления. В электрохимическом ряду напряжений свинец стоит непосредственно перед водородом. Проявляет валентность 2+, а также 4+. Соединения четырехвалентного свинца значительно менее стойки. Разбавленная соляная и серная кислоты почти не действуют на свинец вследствие малой растворимости PbCl2 и PbS04. Легко растворяется в азотной кислоте. Свинец так же как и гидроокись его, растворяется в щелочах, при этом образуются плюмбит-ионы. Все растворимые соединения свинца ядовиты. С крепкой серной кислотой (при концентрации более 80%) свинец реагирует с образованием растворимого гидросульфата Pb(HSO4)2, а в горячей концентрированной соляной кислоте растворение сопровождается образованием комплексного хлорида H4PbCl6.

В присутствии кислорода свинец растворяется также в ряде органических кислот. При действии уксусной кислоты образуется легкорастворимый ацетат Pb(CH2COO)2 (старинное название – «свинцовый сахар»). Свинец заметно растворим также в муравьиной, лимонной и винной кислотах. Растворимость свинца в органических кислотах могло раньше приводить к отравлениям, если пищу готовили в посуде, луженной или паянной свинцовым припоем. Растворимые соли свинца (нитрат и ацетат) в воде гидролизуются:

Pb(NO3)2 + H2O Pb(OH)NO3 + HNO3

При нагревании свинец реагирует с кислородом, серой и галогенами. Так, в реакции с хлором образуется тетрахлорид PbCl4 – желтая жидкость, дымящая на воздухе из-за гидролиза, а при нагревании разлагающаяся на PbCl2 и Cl2. (Галогениды PbBr4 и PbI4 не существуют, так как Pb(IV) – сильный окислитель, который окислил бы бромид- и иодид-анионы.) Тонкоизмельченный свинец обладает пирофорными свойствами – вспыхивает на воздухе. При продолжительном нагревании расплавленного свинца он постепенно переходит сначала в желтый оксид PbO (свинцовый глет), а затем (при хорошем доступе воздуха) – в красный сурик Pb3O4 или 2PbO·PbO2. Это соединение можно рассматривать также как свинцовую соль ортосвинцовой кислоты Pb2[PbO4]. С помощью сильных окислителей, например, хлорной извести, соединения свинца(II) можно окислить до диоксида:

Pb(CH3COO)2 + Ca(ClO)Cl + H2O ® PbO2 + CaCl2 + 2CH3COOH.

Диоксид образуется также при обработке сурика азотной кислотой:

Pb3O4 + 4HNO3 ® PbO2 + 2Pb(NO3)2 + 2H2O.

Если сильно нагревать коричневый диоксид, то при температуре около 300° С он превратится в оранжевый Pb2O3 (PbO·PbO2), при 400°С – в красный Pb3O4, а выше 530° С – в желтый PbO (разложение сопровождается выделением кислорода).

Органические производные свинца – бесцветные очень ядовитые жидкости. Один из методов их синтеза – действие алкилгалогенидов на сплав свинца с натрием:

4C2H5Cl + 4PbNa ® (C2H5)4Pb + 4NaCl + 3Pb

Действием газообразного HCl можно отщеплять от тетразамещенных свинца один алкильный радикал за другим, заменяя их на хлор. Соединения R4Pb разлагаются при нагревании с образованием тонкой пленки чистого металла. Такое разложение тетраметилсвинца было использовано для определения времени жизни свободных радикалов.


Информация о работе «Геохимия титана и свинца»
Раздел: Геология
Количество знаков с пробелами: 36817
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
40130
5
1

рассеянных химических элементов. Наиболее обоснованные данные о средних значениях (кларках) химических элементов в воде Мирового океана приведены в сводках Э.Д. Голдберга (1963), А.П. Виноградова (1967), Б. Мейсона (1971), Г. Хорна (1972), А.П. Лисицина (1983), К.Н. Турекиана (1969). В табл. 4.1 использованы результаты преимущественно двух последних авторов. Как видно из приведенных данных, ...

Скачать
24016
2
1

... меньше и измеряются тысячными и меньшими долями процента. Понятие о состоянии рассеяния химических элементов, так же как и о их «всюдности», было введено в науку В.И. Вернадским. Полный химический состав верхнего, так называемого гранитного, слоя континентального блока земной коры приведен в табл. 1.1. Таблица 1.1 Кларки химических элементов гранитного слоя коры континентов Химический ...

Скачать
96877
0
0

... островной дуги, разрезанной более молодыми структурами САХ. Обсуждение К основным факторам, определяющим разнообразие состава вулканитов в районе тройного сочленения Буве, относятся: плюмовая активность, сложная геодинамика района тройного сочленения, приведшая к многообразию форм взаимодействия плюмового магматизма с рифтовым магматизмом и веществом литосферы, а также, возможно, ...

Скачать
442397
6
13

... с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений понятие окислительно-восстановительных реакций было распространено на реакции, в которых кислород не участвует. В неорганической химии окислительно-восстановительные реакции (ОВР) формально могут рассматриваться как перемещение электронов от атома одного реагента (восстановителя) к атому другого ( ...

0 комментариев


Наверх