Наблюдаемые последствия климатических изменений и их возможное влияние на эволюцию геосистем

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов
Вековая динамика климатической системы Земли, ее масштабы и периодизация Предполагаемые причины и факторы климатических изменений. Циклические колебания климата Наблюдаемые последствия климатических изменений и их возможное влияние на эволюцию геосистем Ландшафтно-климатическая динамика в Центре России и сопредельных регионах на рубеже XX – XXI веков Физико-географические условия Рязанской области Источники данных Среднемноголетние и экстремальные значения метеорологических величин Пространственная неоднородность климата в пределах Рязанской области и ее физико-географические факторы Общий обзор наиболее существенных изменений регионального климата, произошедших к началу XXI века Региональные гидроклиматические взаимосвязи Климат как фактор динамики региональных экосистем Предполагаемые перспективы климатических изменений и сопряженных с ними преобразований ландшафтов
144667
знаков
17
таблиц
67
изображений

1.3 Наблюдаемые последствия климатических изменений и их возможное влияние на эволюцию геосистем

 

Несмотря на относительную недолговременность происходящих климатических изменений, уже сейчас можно выявить ряд вызванных ими последствий. В частности, к ним можно отнести:

·  отступление горных ледников практически во всех широтных зонах;

·  сокращение площади и уменьшение толщины морских льдов в Арктическом бассейне;

·  уменьшение площади шельфовых ледников в Антарктиде;

·  изменение структуры кораллов в тропических широтах;

·  изменение границ и толщины снежного покрова в умеренных и высоких широтах;

·  увеличение длины вегетационного периода;

·  изменение сезонных амплитуд температуры воздуха и сезонных колебаний концентрации CO2 в атмосфере;

·  прямое влияние увеличения концентрации CO2 на естественную и культурную растительность;

·  смещение сроков наступления сезонных явлений в жизни растений и животных;

·  расширение границ ареалов растений и животных к северу.

Так же как и в прошлом, криосфера, и, прежде всего горные ледники, является наиболее чувствительной частью глобальной климатической системы. В таблице 3 приведены следующие данные об уменьшении длины ледников (l,м/год), наблюдаемом начиная с конца прошлого века практически во всех районах земного шара.

Наиболее значительные изменения площадей горных ледников происходят в Центральной Европе, в Тропической Африке, Исландии и Азии. В Центральных Альпах объем ледников сократился на 10 – 20% в 1980 – 1990 гг. по сравнению с их объемами в 1970-е годы. Около половины ледников Исландии активно отступают в последние 20 – 25 лет. Площадь ледников Восточной Африки с начала века уменьшилась на 50 – 60%. В Средней Азии сокращение площадей горных ледников происходит быстрее, чем все известные сокращения за последние 12 тысяч лет[7].

Таблица 1. Уменьшение длины ледников с конца XIX до конца XX веков [7]

Район

Скалис

тые горы

 Шпиц

берген

Ислан

дия

Норвегия  Европа (Альпы)  Центральная Азия Африка (Кения) Новая Зеландия
Период

1890-

1974

 1906–

1990

 1880–

1965

 1880–

11990

 1880–

1988

 1874–

1980

1893–

1987

1844–

1990

l,м/год

-15,2  -51,7  -12,2  -28,7  -15,6  -9,9 -4,8 -25,9

Данные об изменении баланса массы ледников в различных горных районах после 1980-х годов по сравнению с предыдущим 20-летним периодом, показывают, что в горах Тянь-Шаня баланс массы ледников уменьшился в 1,9 раз, в Скалистых горах – в 2 раза, в Альпах – в 10 раз. В целом на Северном полушарии баланс массы горных ледников уменьшился в 1,3 раза при увеличении глобальной температуры на 0,380С.

Исследования также показали, что реакция горных ледников на современное глобальное потепление происходит с меньшим временным сдвигом, чем это предполагали ранее. Считалось, что реакция ледника на глобальное потепление может происходить через 70 – 80 лет, однако последние данные свидетельствуют о том, что она происходит не более чем через 10 – 20 лет.

Кислородно-изотопный анализ ледниковых кернов, взятых на больших высотах в Тибете, в Андах и в горах Тянь-Шаня, свидетельствует о быстром сокращении площади горных ледников и о быстром потеплении тропосферы в субтропических широтах за последние годы. Анализ ледяных кернов из Тибета и Тянь-Шаня подтверждает предположение, высказанное Хансеном о том. Что наиболее значимый сигнал современного глобального потепления может быть обнаружен в центральных районах Азиатского материка, как наиболее обширного и удаленного на значительное расстояние от океана, который сглаживает колебания температуры.

Заметные изменения в последние годы происходят и в состоянии морских льдов в высоких широтах обоих полушарий. Так, толщина льда к северу от Гренландии сократилась с 6 – 7 до 4 – 5 м, а температура воды в районе островов Северная Земля повысилась на 10С.

За период с 1978 по 1995 г. площадь морских льдов сократилась на 610 000 км2 или на 5,7%, причем наиболее существенное уменьшение площади произошло в 1990, 1993 и 1995 гг.

Эффективная толщина льда в Арктическом бассейне с 1970 по 1992 г. сократилась на 12 – 14 см, что составляет 3 – 4% средней толщины льда (3 м), т. е. в среднем она уменьшалась на 0,5 см в год.

Экспедиционные исследования последних лет отмечают необычайно высокую температуру воды в высоких широтах (севернее 75 – 770 с. ш.) в начале 90-х годов (положительная аномалия 0,5 – 10С). Как показала анализ этих материалов, современное потепление арктических вод не имеет аналогов в предшествующий период инструментальных наблюдений, при этом процесс потепления в высоких широтах начался не ранее 1988 г. и распространялся с запада на восток [7].

Рис. 1.1.3. Сокращение площади ледника в Антарктике за период с 1979 по 2003 гг.[22]

 

В состоянии ледникового покрова Антарктиды также происходят определенные изменения. Анализ 50-летних метеорологических рядов температуры воздуха и данных о состоянии ледников Антарктического полуострова указывает на устойчивый тренд потепления и разрушения ледников: площадь пяти из девяти шельфовых ледников в этом районе быстро уменьшается. Прибрежные моря очищаются ото льда примерно на месяц раньше по сравнению со среднемноголетними сроками. Отмечаются также и более поздние сроки образования льда (примерно на месяц) в прибрежных морях Антарктиды и в море Уэдделла. Таким образом, продолжительность безледного периода на морской акватории Антарктиды увеличилась не менее чем на 1 – 1,5 месяца.

По данным Е.И. Александрова, устойчивый тренд повышения температуры воздуха в районе Антарктиды отмечается уже более 30 лет.

Однако также имеются сведения об увеличении высоты Гренландского ледникового щита, как следствие увеличения осадков в высоких широтах. Этот процесс не противоречит развитию современного потепления, а, наоборот, согласуется с тенденцией изменения осадков в полярных широтах при развитии глобального потепления. Имеются данные об увеличении облачности (до 25%) в районе Антарктиды за последние 10 – 12 лет. Последствием этого процесса, с одной стороны, является увеличение осадков и скорости аккумуляции снега, а с другой – увеличение облачности может привести к тому, что океан в районе Антарктиды будет поглощать меньшее количество углекислого газа, а это вызовет усиление парникового эффекта.

Определенным индикатором современного глобального потепления являются данные об уменьшении площади и толщины снежного покрова в Северном полушарии и об изменении сроков вскрытия и замерзания крупных рек.

По данным спутниковых наблюдений, за 1970 – 1988 гг. площадь снежного покрова в Северном полушарии уменьшилась с 23 млн. км2 до 17 млн. км2. В речных бассейнах европейской территории России продолжительность ледового периода сократилась на 15 дней и более, наибольшие изменения произошли в бассейне Дона, где ледовый период уменьшился на 20 – 25 дней за 100 лет. В бассейнах рек Кама, Белая, Обь и Иртыш ледовый период сократился на 9 – 14 дней.

Имеются данные о повышении температуры поверхности почвы в районах вечной мерзлоты на севере Аляски и Канады (на 2 – 40С по сравнению с температурой 70-х гг.). Это привело к частичному таянию вечной мерзлоты и изменению баланса углерода в тундровых экосистемах. Есть мнение, что вследствие потепления может измениться направление потоков углекислого газа тундровые экосистемы могут стать дополнительным источником CO2, т. е. будут способствовать усилению парникового эффекта.

Другим важнейшим индикатором изменения глобальной температуры могут быть данные об изменении глубины проникновения колебаний температуры почвы. Известно, что сезонные колебания температуры проникают в глубину на несколько метров, в то время как климатические колебания, продолжительность которых составляет десятки и сотни лет, могут проявляться на глубинах более 100 м. В северной части Аляски и на севере Канады температура за последние годы увеличилась на 2 – 40С, в центральной части Северной Америки – от 0,40С на широте 41,10 с. ш. до 2,00С на широте 500 с. ш. Измерения, выполненные в тропических районах Замбии и Заира, в центральной части Германии и Чехии, свидетельствуют о том, что на больших глубинах температура за последнее столетие возросла на 0,6 – 0,70С, что практически полностью согласуется с материалами наземных метеорологических станций.

Имеются данные, свидетельствующие о быстром повышении температуры поверхности воды в тропических и субтропических районах Мирового океана (Тихий океан и Атлантика). В восточной части Тихого океана температура воды увеличилась на 2 – 30С за последние 15 – 20 лет. Также в этом районе отмечается процесс разрушения коралловых рифов и изменение их окраски (выбеливание). Возможно, это связано с увеличением концентрации парниковых газов в результате глобального потепления. Анализ эмпирических данных об изменении температуры воды на разных глубинах в Северной Атлантике показал, что за последние 35 лет температура воды в слое 800 – 2500 м повышалась в среднем со скоростью 10С за 100 лет. Наибольшее увеличение температуры зарегистрировано на глубине 1100 м.

В настоящее время существует ряд неоспоримых свидетельств реакции растительности на современное глобальное потепление. Первые признаки такого влияния – увеличение ширины годичного кольца древесины – были обнаружены еще в 1986 г. при анализе древесины хвойных деревьев из высокогорных районов Калифорнии.

Также произошли изменения в анатомическом строении листа по сравнению с растительностью доиндустриального периода, что связано с ростом концентрации СO2 в атмосфере. Последствием таких изменений является более эффективное использование воды растениями, что позволяет им существовать в условиях более засушливого климата.

Есть данные, что с конца 1960-х гг. продолжительность вегетационного периода в высоких широтах Северного полушария увеличилась не менее чем на 7 дней. За два последних десятилетия сельскохозяйственный сезон удлинился на 18 дней в Евразии и на 12 дней в Северной Америке.

Современное глобальное потепление климата отразилось на сроках наступления сезонных явлений на всех континентах Северного полушария. Причем общие направления фенологической тенденции везде одинаковы – смещение к более ранним срокам наступления весенних явлений и к более поздним – осенних. Смещение сроков к более раннему началу биологической весны до 8 дней за 1969 – 1998 гг. установилось по всей Европе на 6 дней с 1959 по 1993 г. – в Северной Америке [27].

Средние даты распускания листьев сместились на 6 дней к более ранним срокам, а осенняя окраска листьев стала появляться на 5 дней позднее. С удлинением вегетационного периода в северных широтах участились случаи массового вторичного цветения, как травянистых, так и древесно-кустарниковых растений.

С глобальным потеплением климата связывают расширение границ ареалов растений и животных к северу в связи со смещением изотерм: в Европе при общем потеплении в среднем на 0,80С изотерма 00 сместилась к северу на 120 км. В горных районах с хорошо выраженной поясностью также отмечается смещение нулевой изотермы вверх и, как следствие, - смещение геоботанических границ. Так, на Южном Урале за последние сто лет верхняя граница леса поднялась по высоте на 60 – 80 м, а по склону на 500 – 600 м за счет уменьшения площади горной тундры [27].

Приведенные выше материалы об отклике различных природных объектов на современные климатические изменения свидетельствуют о реальности глобального потепления. Существует ряд причин, которые позволяют считать, что столь быстрое и значительное потепление климата последних 20 – 25 лет не является естественным колебанием климата, а связано с антропогенным влиянием, и, прежде всего, с ростом концентрации парниковых газов в атмосфере.

 


Информация о работе «Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов»
Раздел: География
Количество знаков с пробелами: 144667
Количество таблиц: 17
Количество изображений: 67

Похожие работы

Скачать
122623
3
3

... даже фотографией. Была в обители и своя типография, где печаталась духовная и образовательная литература. Глава 3. Оценка перспектив развития и потенциала религиозного туризма в Калужской области   3.1 Разработка критериев оценки туристических ресурсов района Для современной рыночной экономики России все более актуальным становится вопрос оптимизации развития региональной экономики, ...

Скачать
458839
60
1

... при крайне отсталой про­изводственной базе легкой и пищевой промышленностей, гражданского машиностроения и сельского хозяйства. Каждая из этих проблем по своему осложняет интеграцию России в мировую экономику. Перестройка хозяйственного механизма закономерно сопровождается всплеском инфляции, нехваткой финансовых ресурсов, резким сужением платежеспособности населения многих предприятий. В итоге — ...

Скачать
122687
24
0

... ­щихся новых альтернативных систем земледелия. Глубокие изменения в общественно-политической сфере, в со­циально-экономической жизни России определили необходимость совершенствования и развития систем земледелия. Это связано с многоукладностью сельскохозяйственного производства в условиях перехода к рыночной экономике, обострением экологических про­блем на фоне большого количества землевладельцев ...

0 комментариев


Наверх