4. ad=0. Возможно 8 случаев (см. предыдущий пункт).

bc=3. Возможно 2 случая (см. первый пункт).

Получили с данным условием 16 обратимых матриц.

Таким образом, по данной классификации получаем 8+8+16+16+16=48 обратимых матриц, определитель которых равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 3, и число таких матриц будет также равно 48.

Следовательно, из 256 квадратных матриц второго порядка над Z4 обратимыми являются 96.

Обратимые матрицы над Z6.

*

0

1

2

3

4

5

0

0 0 0 0 0 0

1

0 1 2 3 4 5

2

0 2 4 0 2 4

3

0 3 0 3 0 3

4

0 4 2 0 4 2

5

0 5 4 3 2 1
Всего различных матриц второго порядка над Z6: 64=1296.

В Z6 обратимыми элементами являются 1 и 5. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1:
|A|=ad-bc=1.

Разобьем на следующие варианты:

1. ad=5. Возможные случаи:

1)  a=1 Ù d=5,

2)  a=5 Ù d=1,

bc=4. Возможные случаи:

1)  b=1 Ù c=4,

2)  b=4 Ù c=1,

3)  b=2 Ù c=5,

4)  b=5 Ù c=2,

5)  b=c=2,

6)  b=c=4.

Получили с данным условием 12 обратимых матриц.

2. ad=4. Возможно 6 случаев (см. предыдущий пункт).

bc=3. Возможные случаи:

1)  b=3 Ù c=1,

2)  b=1 Ù c=3,

3)  b=3 Ù c=5,

4)  b=5 Ù c=3,

5)  b=c=3.

Получили с данным условием 30 обратимых матриц.

3. ad=3. Возможно 5 случаев (см. предыдущий пункт).

bc=2. Возможные случаи:

1)  b=2 Ù c=1,

2)  b=1 Ù c=2,

3)  b=2 Ù c=4,

4)  b=4 Ù c=2,

5)  b=4 Ù c=5,

6)  b=5 Ù c=4.

Получили с данным условием 30 обратимых матриц.

4. ad=2. Возможно 6 случаев (см. предыдущий пункт).

bc=1. Возможные случаи:

1)  b=c=1,

2)  b=c=5.

Получили с данным условием 12 обратимых матриц.

5. ad=1. Возможно 2 случая (см. предыдущий пункт).

bc=0. Возможные случаи:

1)  b=0 Ù c=1,

2)  b=0 Ù c=2,

3)  b=0 Ù c=3,

4)  b=0 Ù c=4,

5)  b=0 Ù c=5,

6)  b=1 Ù c=0,

7)  b=2 Ù c=0,

8)  b=3 Ù c=0,

9)  b=4 Ù c=0,

10)  b=5 Ù c=0,

11)  b=2 Ù c=3,

12)  b=3 Ù c=2,

13)  b=3 Ù c=4,

14)  b=4 Ù c=3,

15)  b=c=0.

Получили с данным условием 30 обратимых матриц.


Информация о работе «Обратимые матрицы над кольцом целых чисел»
Раздел: Математика
Количество знаков с пробелами: 25275
Количество таблиц: 6
Количество изображений: 4

Похожие работы

Скачать
50071
3
0

... гомоморфизм . K= - подгруппа Z и значит K=mZ для некоторого целого m. Отсюда следует, что H= . При этом и потому n=dm где d - целое. По теореме о гомоморфизме . Из доказанных теорем следует, что всякая подгруппа циклической группы циклична. Мы видим также, что для каждого целого d, делящего порядок n конечной циклической группы имеется и притом ровно одна подгруппа порядка d, то есть для ...

Скачать
15005
0
0

... но они не равны друг другу. Так будет, например, для подкольца , состоящего из матриц с нулевой последней строкой и последним столбцом; =diag(1,1,...,1,0) =diag(1,1,...,1). Определение. Гомоморфизмом колец называется отображение, сохраняющее обе кольцевые операции: и . Изоморфизм - это взаимно однозначный гомоморфизм. Ядро гомоморфизма - это ядро группового гомоморфизма аддитивных групп , то ...

Скачать
7592
0
0

... -x * y. Полем называется такое ассоциативное коммутативное кольцо с единицей k, в котором всякий ненулевой элемент обратим: . Таким образом, по определению в поле отсутствуют делители нуля. Кольцом называется множество с двумя алгебраическими операциями R (+, *), если:   0. Обратимыми называют те элементы кольца R, которые имеют обратные относительно операции умножения, множество R в данном случае ...

Скачать
38950
13
4

...   a  =  bq1  + r1 ,   b = r1 q2  + r2 ,   r1  = r2 q3  + r3 ,   . . . . . . . . . . . . .   rn-2  = rn-1qn-1+ rn . Докажем, что каждое из чисел rk линейно выражается через a и b с целыми коэффициентами. Для r1 утверждение тривиально: r1 = a - bq1 . Считая, что каждое из чисел r1 , r2 , . . . , rn-1 является целочисленной линейной комбинацией чисел a ...

0 комментариев


Наверх