2.  Любая цепь является дистрибутивной решёткой.


ТЕОРЕМА 1.2. Решётка L с 0 и 1 является дистрибутивной тогда и только тогда, когда она не содержит подрешёток вида

Доказательство этой теоремы можно найти в книге [1].

1.4. Обобщённо булевы решётки, булевы решётки

 

Всюду далее под словом «решётка» понимается произвольная дистрибутивная решётка с 0.

Решётка L называется обобщённой булевой, если для любых элементов  и d из L, таких что  существует относительное дополнение на интервале , т.е. такой элемент  из L, что  и .

(Для , , интервал |; для , можно так же определить полуоткрытый интервал |).

ТЕОРЕМА 1.3. (О единственности относительного дополнения в обобщённо булевой решётке). Каждый элемент обобщённо булевой решётки L имеет только одно относительное дополнение на промежутке.

Доказательство. Пусть для элемента  существует два относительных дополнения  и  на интервале . Покажем, что . Так как  относительное дополнение элемента  на промежутке , то  и , так же  относительное дополнение элемента  на промежутке , то  и .

Отсюда

,

таким образом , т.е. любой элемент обобщённой булевой решётки имеет на промежутке только одно относительное дополнение.

Решётка L называется булевой, если для любого элемента  из L существует дополнение, т.е. такой элемент  из L, что  и

ТЕОРЕМА 1.4. (О единственности дополнения в булевой решётке). Каждый элемент булевой решётки L имеет только одно дополнение.

Доказательство аналогично доказательству теоремы 1.3.

ТЕОРЕМА 1.5. (О связи обобщённо булевых и булевых решёток).

Любая булева решётка является обобщённо булевой, обратное утверждение не верно.

Доказательство. Действительно, рассмотрим произвольную булеву решётку L. Возьмём элементы a и d из L, такие что . Заметим, что относительным дополнением элемента a до элемента d является элемент , где a’ – дополнение элемента a в булевой решётке L. Действительно, , кроме того . Отсюда следует, что решётка L является обобщённо булевой.

 

1.5. Идеалы

Подрешётка I решётки L называется идеалом, если для любых элементов  и  элемент  лежит в I. Идеал I называется собственным, если . Собственный идеал решётки L называется простым, если из того, что  и  следует  или .

Так как непустое пересечение любого числа идеалов снова будет идеалом, то мы можем определить идеал, порождённый множеством H в решётке L, предполагая, что H не совпадает с пустым множеством. Идеал, порождённый множеством H будет обозначаться через (H]. Если , то вместо  будем писать  и называть  главным идеалом.

ТЕОРЕМА 1.5. Пусть L – решётка, а H и I – непустые подмножества в L, тогда I является идеалом тогда и только тогда, когда если , то , и если , то .

Доказательство. Пусть I – идеал, тогда  влечёт за собой , так как I – подрешётка. Если , то  и условия теоремы проверены.

Обратно, пусть I удовлетворяет этим условиям и . Тогда  и так как , то , следовательно, I – подрешётка. Наконец, если  и , то , значит,  и I является идеалом.


Глава 2 2.1. Конгруэнции

Отношение эквивалентности (т.е. рефлексивное, симметричное и транзитивное бинарное отношение)  на решётке L называется конгруэнцией на L, если  и  совместно влекут за собой  и  (свойство стабильности). Простейшими примерами являются ω, ι, определённые так:

(ω); (ι) для всех .

Для  обозначим через  смежный класс, содержащий элемент , т.е. ‌|

Пусть L – произвольная решётка и . Наименьшую конгруэнцию, такую, что  для всех , обозначим через  и назовём конгруэнцией, порождённой множеством .

ЛЕММА 2.1. Конгруэнция существует для любого .

Доказательство. Действительно, пусть Ф = | для всех . Так как пересечение в решётке  совпадает с теоретико-множественным пересечением, то  для всех . Следовательно, Ф=.

В двух случаях мы будем использовать специальные обозначения: если  или  и - идеал, то вместо мы пишем  или  соответственно. Конгруэнция вида  называется главной; её значение объясняется следующей леммой:

ЛЕММА 2.2. =|.

Доказательство. Пусть , тогда , отсюда . С другой стороны рассмотрим , но тогда . Поэтому  и .

Заметим, что  - наименьшая конгруэнция, относительно которой , тогда как  - наименьшая конгруэнция, такая, чтосодержится в одном смежном классе. Для произвольных решёток о конгруэнции почти ничего не известно. Для дистрибутивных решёток важным является следующее описание конгруэнции :

 ТЕОРЕМА 2.1. Пусть - дистрибутивная решётка,  и . Тогда  и .

 Доказательство. Обозначим через Ф бинарное отношение, определённое следующим образом:  и .

 Покажем, что Ф – отношение эквивалентности:

1) Ф – отношение рефлексивности: x·a = x·a ; x+b = x+b;

2) Ф – отношение симметричности:

 x·a = y·a и x+b = y+b  y·a = x·a и y+b = x+b ;

3) Ф – отношение транзитивности.

Пусть  x·a = y·a и x+b = y+b и пусть  y·с = z·с и y+d = z+d. Умножим обе части x·a = y·a на элемент с, получим x·a·c = y·a·c. А обе части y·с = z·с умножим на элемент a, получим y·c·a = z·c·a. В силу симметричности x·a·c = y·a·c = z·a·c. Аналогично получаем x+b+d = y+b+d = z+b+d. Таким образом .

Из всего выше обозначенного следует, что Ф – отношение эквивалентности.

Покажем, что Ф сохраняет операции. Если  и zL, то (x+z) ·a = (x·a) + (z·a) = (y·a) + (z·a) = (y+z) ·a и (x+z)+b = z+(x+b) = z+(y+b); следовательно, . Аналогично доказывается, что  и, таким образом, Ф – конгруэнция.

Наконец, пусть  - произвольная конгруэнция, такая, что , и пусть . Тогда x·a = y·a, x+b = y+b , и . Поэтому вычисляя по модулю , получим

, т.е. , и таким образом, .

СЛЕДСТВИЕ ИЗ ТЕОРЕМЫ 2.1. Пусть I – произвольный идеал дистрибутивной решётки L. Тогда  в том и только том случае, когда  для некоторого . В частности, идеал I является смежным классом по модулю .

Доказательство. Если , то и элементы x·y·i, i принадлежат идеалу I.

Действительно .

Покажем, что .

Воспользуемся тем, что  (*), заметим, что  и , поэтому мы можем прибавить к тождеству (*)  или , и тождество при этом будет выполняться.

 Прибавим : , получим .

 Прибавим : , получим .

Отсюда . Таким образом,.

Обратно согласно лемме 2, ‌‌‌‌‍| 

Однако  и поэтому ‌‌‌‌‍|

 Если , то  откуда

.

 Действительно,  (**).

Рассмотрим правую часть этого тождества:

Объединим первое и второе слагаемые –

.

Объединим первое и третье слагаемые –

,

таким образом  (***)

Заметим, что , поэтому прибавим к обеим частям выражения (***) y:

Но , отсюда .

Следовательно, условие следствия из теоремы 2.1. выполнено для элемента . Наконец, если  и , то , откуда  и , т.е.  является смежным классом.

ТЕОРЕМА 2.2. Пусть L – булева решётка. Тогда отображение   является взаимно однозначным соответствием между конгруэнциями и идеалами решётки L. (Под  понимаем класс нуля по конгруэнции , под  понимаем решётку конгруэнций.)

Доказательство. В силу следствия из теоремы 2.1. это отображение на множество идеалов; таким образом мы должны только доказать, что оно взаимно однозначно, т.е. что смежный класс  определяет конгруэнцию . Это утверждение, однако, очевидно. Действительно  тогда и только тогда, когда  (*), последнее сравнение в свою очередь равносильно сравнению , где с – относительное дополнение элемента  в интервале .

 Действительно, помножим выражение (*) на с:

, но, а , отсюда .

Таким образом,  в том и только том случае, когда .

Примечание. Приведённое доказательство не полностью использует условие, что L – дистрибутивная решётка с дополнениями. Фактически, мы пользовались только тем, что L имеет нуль и является решёткой с относительными дополнениями. Такая решётка называется обобщённой булевой решёткой.

ТЕОРЕМА 2.3 (Хасимото [1952]). Пусть L – произвольная решётка. Для того, чтобы существовало взаимно однозначное соответствие между идеалами и конгруэнциями решётки L, при котором идеал, соответствующий конгруэнции , являлся бы смежным классом по , необходимо и достаточно, чтобы решётка L была обобщённой булевой.

Доказательство. Достаточность следует из доказательства теоремы 2.2. Перейдём к доказательству необходимости.

 Идеалом, соответствующим конгруэнции , должен быть (0]; следовательно, L имеет нуль 0.

 Если L содержит диамант , то идеал (a] не может быть смежным классом, потому что из  следует  и . Но , значит, любой смежный класс, содержащий , содержит и , и .

Аналогично, если L содержит пентагон  и смежный класс содержит идеал , то  и , откуда . Следовательно, этот смежный класс должен содержать  и .

Итак, решётка L не содержит подрешёток, изоморфных ни диаманту, ни пентагону. Поэтому, по теореме 1.2., она дистрибутивна.

Пусть  и . Согласно следствию из теоремы 2.1., для конгруэнции  идеал  так же является смежным классом, следовательно, , откуда . Опять применяя следствие из теоремы 2.1. получим,  для некоторого . Так как , то  и . Следовательно, о полу орого ледствие 4 получим, цииодержать , соответствующим конгруэнции образом мы должны только доказать, ______________ и , т.е. элемент  является относительным дополнением элемента  в интервале .

 

2.2. Основная теорема

 

(1)  Пусть  - обобщённая булева решётка. Определим бинарные операции  на B, полагая  и обозначая через  относительное дополнение элемента  в интервале . Тогда  - булево кольцо, т.е. (ассоциативное) кольцо, удовлетворяющее тождеству  (а следовательно и тождествам , ).

(2)  Пусть  - булево кольцо. Определим бинарные операции  и  на , полагая, что  и . Тогда  - обобщённая булева решётка.

Доказательство.

(1)  Покажем, что  - кольцо.

 Напомним определение. Кольцо  - это непустое множество  с заданными на нём двумя бинарными операциями , которые удовлетворяют следующим аксиомам:

1.  Коммутативность сложения:  выполняется ;

2.  Ассоциативность сложения:  выполняется ;

3.  Существование нуля, т.е. , ;

4.  Существование противоположного элемента, т.е. , , ;

5.  Ассоциативность умножения: , ;


Информация о работе «Обобщённо булевы решетки»
Раздел: Математика
Количество знаков с пробелами: 21130
Количество таблиц: 0
Количество изображений: 12

0 комментариев


Наверх