2.2 Активные угли

 

Активные угли характеризуются гидрофобностью (плохой сорбируемостью полярных веществ, к которым принадлежит и вода). Это свойство определяет широкое их использование в практике рекуперационной и санитарной очистки отходящих газов разнообразной влажности.

Для адсорбции газов и паров используют микропористые гранулированные активные угли. С этой целью промышленность выпускает в настоящее время следующие марки газовых и рекуперационных активных углей: АГ-2, СКТ, АР, СКТ-3, АРТ. Угли АГ-2 (марок А и Б) и АР (марок АР-А, АР-Б, АР-В) получают из каменноугольной пыли и смолы методом парогазовой активации. Уголь СКТ синтезируют из торфа, а угли СКТ-3 и АРТ (марок АРТ-1 и АРТ-2)- из торфа и каменноугольной пыли методом химической активации. Угли АГ-2 предназначены для адсорбции газов, уголь СКТ — для улавливания паров органических веществ, угли АР, СКТ-3 и АРТ- для очистки газов от паров летучих растворителей. Активные угли для газоочистки характеризуются объемом микропор в пределах 0,24— 0,48 см3 /г при суммарном объеме пор 0,52 - 1,00 см3 /г, гравиметрическая плотность их гранул составляет 0,3 - 0,6 г/см3. Теплоемкость сухого угля - 0,84 кДж/(кг*К), теплопроводность при 30°С— 0,17— 0,28 Вт/(м*К).

Активные угли производят в виде цилиндрических гранул диаметром 1-6 мм и длиной, обычно превосходящей поперечный размер гранул, и чаще всего применяют в виде стационарного слоя, через который фильтруют подлежащий очистке газовый поток. В соответствии с действующими стандартами и технологическими условиями размер поперечника гранул углей может изменяться в определенных пределах. В этой связи в отдельных случаях с целью интенсификации соответствующих процессов гранулированные угли перед использованием подвергают дроблению и классификации с выделением необходимых узких фракций. Существенными недостатками активных углей являются относительно невысокая механическая прочность и горючесть.

Значительный интерес применительно к решению задач газоочистки в последнее время вызывают такие нетрадиционные углеродные адсорбенты, как активные угли из полимерных материалов, молекулярно-ситовые активные угли и активированные углеродные волокна.

Производимые из полимерных материалов активные угли характеризуются развитой системой микропор с диаметром (1—1,5)*10-9 м, более регулярной структурой, обеспечивающей определенное улучшение прочностных характеристик, и повышенной адсорбционной активностью при низких содержаниях целевых компонентов в очищаемых газах.

Молекулярно-ситовые активные угли отличаются высокой однородностью микропористой структуры и обладают микропорами еще более узких размеров [(0,4—0,7) * 10-9 м], имеющих тот же порядок, что и размеры молекул. Перспективным направлением их использования полагают очистку влажных газов.

Активированные углеродные волокна представляют собой изготовляемые из синтетических волокон микропористые адсорбенты с Широкой гаммой физических форм продукции на их основе (путанка, нетканые изделия, войлок, ткань и другие материалы), обеспечивающей разнообразность аппаратурного оформления соответствующих процессов газоочистки. Наряду с высокой термохимической стойкостью и хорошими поглотительными и фильтрующими свойствами волокнистые углеродные адсорбенты ввиду весьма малых диаметров их волокон, составляющих (0,6—1,0)*10-5 м, характеризуются повышенными скоростями адсорбционно - десорбционных процессов.


2.3 Силикагели

 

Силикагели по своей химической природе представляют собой гидратированные аморфные кремнеземы (SiO2*nН2О), являющиеся реакционноспособными соединениями переменного состава, превращения которых происходят по механизму поликонденсации:

nSi(ОН)4 → SinO2n-m +(2n-m)Н2O.

Поликонденсация ведет к формированию структурной сетки сфероподобных частиц коллоидных размеров (2*10-9-2*10-8 м), сохраняющейся при высушивании гидрогеля кремневой кислоты и образующей жесткий кремнекислородный каркас. Зазоры между частицами образуют пористую структуру силикагеля. Для получения силикагелей в промышленности обычно используют метод осаждения аморфного кремнезема из силикатов щелочных металлов минеральными кислотами. Выпускают силикагель в виде шариков, таблеток или кусочков неправильной формы. Размеры их зерен составляют от 0,1 до 7,0 мм. Адсорбционные и химические свойства силикагелей существенно зависят от наличия на их поверхности групп ≡ Si—ОН.

По характеру пористой структуры силикагеля классифицируют на крупно-, средне- и мелкопористые, к которым относят кусковые и гранулированные материалы, характеризующиеся средним радиусом пор, составляющим соответственно ≈5*10-9, (5-1,5)*10-9 и (1,5-1,0)* 10-9 м. По размеру зерен кусковые силикагели широкого использования делят на 4 марки (7,0- 2,7; 3,5-1,5; 2,0-0,25; 0,5-0,2 мм), а гранулированные — на 2 марки (7,0- 2,7 и 3,5-1,0 мм).

Для их обозначения используют буквенные сочетания:

КСК — крупный силикагель крупнопористый,

КСС — крупный силикагель срсднепористый,

МСМ — мелкий силикагель мелкопористый и т. п.

Средние фракции силикагелей называют шихтой и обозначают соответственно как ШСК, ШСС и ШСМ. Гранулированный мелкопористый силикагель содержит 4—10% Аl2O3 в качестве добавки, предупреждающей растрескивание его гранул.

Объем пор силикагелей составляет 0,3-1,2 см3 /г, их удельная поверхность находится в пределах 300-750 м3 /г, а гравиметрическая плотность заключена в интервале 0,4-0,9 г/см3. Последний показатель может служить косвенной характеристикой пористой структуры силикагелей: для мелкопористых силикагелей он составляет 0,7-0,8 г/см3, а для крупнопористых - 0,4 - 0,5 г/см3. Теплоемкость силикагелей — 0,92 кДж/(кг-К), теплопроводность при 30 °С равна 0,11 кДж/(м*ч*К).

Силикагели служат для поглощения полярных веществ. Мелкопористые силикагели используют для адсорбции легкоконденсируемых паров и газов, крупнопористые и частично среднепористые силикагели служат эффективными поглотителями паров органических соединений. Высокое сродство поверхности силикагелей к парам воды обусловливает широкое их использование, а качестве агентов осушки разнообразных газовых сред. Силикагели негорючи и характеризуются низкой температурой регенерации (110—200 °С) и достаточно высокой механической прочностью. В то же время они разрушаются под действием капельной влаги, что необходимо учитывать при их использовании в системах газоочистки.


Информация о работе «Абсорбционные, адсорбционные и хемосорбционные методы очистки отходящих газов»
Раздел: Экология
Количество знаков с пробелами: 23182
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
16353
1
0

... планеты Земля. В настоящее время с ростом и бурным развитием промышленности большое внимание уделяется ее экологической обоснованности, а именно проблеме очистке и утилизации отходов. В данном конспекте лекций рассматривается один из видов отходов промышленности – газовые выбросы предприятий. Впервые как проблему газовые выбросы можно рассматривать на примере лондонского «смога» (от англ. smoke – ...

Скачать
28546
1
10

... газов от газообразных и парообразных токсичных веществ применяют следующие методы: абсорбции (физической и хемосорбции), адсорбции, каталитические, термические, конденсации и компримирования. Абсорбционные методы очистки отходящих газов подразделяют по следующим признакам: 1) по абсорбируемому компоненту; 2) по типу применяемого абсорбента; 3) по характеру процесса – с циркуляцией и без ...

Скачать
39641
1
13

... . Газы в промышленности обычно загрязнены вредны­ми примесями, поэтому очистка широко применяется на заводах и предприятиях для технологических и санитарных (экологических) целей. Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на три основные группы: абсорбция жидкостями; адсорбция твердыми поглотителями ; каталитическая очистка. В ...

Скачать
33315
0
7

... , температуру и давление кислого газа и требования к температуре и давлению очищенного газа, требования к производительности установки, компонентный состав газа и т.д. 5. Применение адсорбционных методов защиты атмосферы Абсорбционные и хемосорбционные методы широко применяют для очистки газов от СО, NxOy, SO2, H2S, HCl, CO2. Сущность метода заключается в поглощении удаляемых компонентов ...

0 комментариев


Наверх