Очистка сточных вод от фенола электрохимическим окислением

30153
знака
3
таблицы
9
изображений

Введение

Одна из важнейших проблем современности — охрана биосферы от биогенных органических загрязнителей. Один из наиболее токсичных компонентов природных и сточных вод — фенол. Многообразие систем, содержащих фенолы, затрудняет подбор оптимальных способов их обезвреживания и утилизации. Это связано с тем, что, во-первых, технология полной очистки воды, как правило, диктует соблюдение особых условий, которые трудно выполнимы на практике. Во-вторых, многие эффективные способы глубокой очистки фенолсодержащих вод сопряжены с большими экономическими и ресурсными затратами, использованием дефицитных реагентов с последующей их регенерацией, утилизацией или захоронением отходов. Поиск новых эффективных способов очистки промышленных сточных вод — актуальная задача.


Глава 1. Фенол: свойства и получение

Фенолы являются одним из наиболее распространенных загрязнений, поступающих в поверхностные воды со стоками предприятий. Сброс фенольных вод в водоемы и водотоки резко ухудшает их общее санитарное состояние, оказывая влияние на живые организмы не только своей токсичностью, но и значительным изменением режима биогенных элементов и растворенных газов (кислорода, углекислого газа).

Процесс самоочищения водоемов от фенола протекает относительно медленно и его следы могут уноситься течением реки на большие расстояния, поэтому до сброса фенолсодержащие стоки подвергают достаточной очистке.

Фенольным соединением называется вещество, имеющее в своей молекуле ароматическое (бензольное) ядро, содержащую одну, две или более гидроксильных групп. Простейшим представителем фенольных соединений является сам фенол:

Фенол

В зависимости от числа ОН-групп различают одноатомные фенолы (например, вышеприведенные фенол и крезолы) и многоатомные. Среди многоатомных фенолов наиболее распространены двухатомные. Двухатомных фенолов (доиксибензолов) существует три соединения:


Пирокатехин Резорцин Гидрохинон

Как видно из приведенных примеров, фенолам свойственна структурная изомерия (изомерия положения гидроксигруппы).

Число известных фенольных соединений весьма велико. К настоящему времени их известно несколько тысяч, причем с каждым годом их число растет. Фенольные соединения принято делить на две группы:

-  летучие с паром фенолы (фенол, крезолы, ксиленолы, гваякол, тимол);

-  нелетучие фенолы (резорцин, пирокатехин, гидрохинон, пирогаллол и другие многоатомные фенолы).

Летучие более токсичны и обладают сильным запахом.

Обычно фенолы в естественных условиях образуются в процессах метаболизма водных организмов, при биохимическом распаде и трансформации органических веществ, протекающих как в водной толще, так и в донных отложениях. Фенольные соединения живых растительных тканей можно считать потенциально токсичными веществами, способными ингибировать рост патогенных грибов или уменьшать скорость размножения вирусов.

Фенолы являются слабыми кислотами (рКа самого фенола 9,98). Высокая реакционная способность фенолов в реакциях окисления находит техническое применение при использовании фенольных соединений в качестве ингибиторов процессов автоокисления масел и жиров и имеет большое значение в биосинтезе природных фенольных соединений. Наиболее важным свойством фенолов с точки зрения выделения и идентификации является способность к образованию солей с металлами.

За небольшими исключениями, все фенольные соединения твердые, а их цвет меняется от светло-желтого до красного, коричневого или пурпурного.

Фенолы являются одним из наиболее распространенных загрязнений, поступающих в поверхностные воды со стоками предприятий нефтеперерабатывающей, сланцеперерабатывающей, лесохимической, коксохимической, анилинокрасочной промышленности, в результате лесосплава, а также со стоками гидролизной промышленности (переработка непищевого растительного сырья целлюлозно-бумажной и отчасти текстильной промышленности).

В сточных водах промышленных предприятий содержание фенолов может превосходить 5-10 г/л при весьма разнообразных сочетаниях, при том что предельно допустимая концентрация фенолов в питьевой воде и воде рыбохозяйственных водоемов составляет 1 мкг/л.

Особенно велики концентрации фенола в стоках коксохимичесих заводов — до 20 г/л, а современный коксохимический завод сбрасывает в сутки в водоемы до 4-10 т фенола.

Превышение естественного фона по фенолу может служить указанием на загрязнение водоемов. В загрязненных фенолами природных водах содержание их может достигать десятков и даже сотен микрограммов в 1 литре.

Вода водоема приобретает окраску, специфический запах карболки, покрывается флуоресцирующей пленкой, мешающей естественному течению биологических процессов в водоеме.

При концентрациях 75 мг/л фенол тормозит процесс биологический очистки в водоеме, при концентрации 0,01-0,1 мг/л в мясе рыб появляется неприятный привкус; неприятный вкус и запах воды исчезают только при разбавлении фенола до концентрации 0,11 мг/л.

В поверхностных водах фенолы могут находиться в растворенном состоянии в виде фенолятов, фенолят-ионов и свободных фенолов.

Фенолы в водах могут вступать в реакции конденсации и полимеризации, образуя сложные гумусоподобные и другие довольно устойчивые соединения. В условиях природных водоемов процессы адсорбции фенолов донными отложениями и взвесями играют незначительную роль.

Сброс фенольных вод в водоемы и водотоки резко ухудшает их общее санитарное состояние, оказывая влияние на живые организмы не только своей токсичностью, но и значительным изменением режима биогенных элементов и растворенных газов (кислорода, углекислого газа).

В результате хлорирования воды, содержащей фенолы, образуются устойчивые соединения хлорфенолов, малейшие следы которых (0,1 мкг/дм3) придают воде характерный привкус и запах.

В токсикологическом и органолептическом отношении фенолы неравноценны. Летучие с паром фенолы более токсичны и обладают более интенсивным запахом при хлорировании. Наиболее резкие запахи дают простой фенол и крезолы.

Фенол и фенольные соединения широко используются на различных производствах. Если на предприятии работать с чистыми соединениями фенола в больших количествах и вне специально предназначенных для этого помещениях, то, согласно ГОСТу, они могут вызывать аллергию, астму, экзему. Проявляется же заболевание не сразу, а через недели и месяцы ежедневного контакта с чистыми соединениями в неприспособленных условиях.

Присутствие фенолов в атмосферном воздухе, по исследованиям специалистов, ведет, кроме того, к заболеваниям системы кровообращения.

Очень токсичным являются нитрофенольные соединения — нитроцен (продукт каменноугольных фенолов), динитрофенол и др.

Эти соединения используют как инсектициды, фунгициды и гербициды. Влияя на окислительные процессы в тканях, они вызывают диссоциацию окислительной форсоризации, что, в свою очередь, усиливает процессы клеточного окисления, увеличивает потребность тканей у кислороде и нарушает теплопродукцию и терморегуляцию.

В водоемах ПДК для фенола установлена 0,001 мг/л. Так, содержание фенолов в воде на мелководных участках Каспийского моря — одного из самых загрязненных фенолом водоема — достигало 8 мкг/л. Среднее содержание фенолов в воде Северного Каспия достигает 6 мкг/л, а характерное для вод этого района среднее значение составляет 3 мкг/л.

Согласно данным специалистов, средняя концентрация фенолов в воде Северного Каспия увеличилась за последнее время до 6 ПДК (0.006 мг/л). Среднее значение содержания фенолов, отмеченное в период с 1995 по 2000 г.г., менялось от 3.0 мкг/л до 9.0 мкг/л. Максимальные концентрации 30.0 мкг/л были отмечены в морской части устья реки Урал и в Уральской бороздине.


Глава 2. Очистка фенолсодержащих сточных вод

Предприятия нефтехимической и нефтеперерабатывающей промышленности являются, как правило, достаточно крупными потребителями воды, которая имеет многоцелевое назначение, в том числе используется для технологических операций, приготовления различных растворов, необходимых для выработки продукции, нагревания и охлаждения продуктов, мойки технологического оборудования и т. д. Общей характерной особенностью сточных вод (СВ) предприятий указанного профиля является наличие в стоках широкого ассортимента растворенных в воде органических веществ, в том числе нефтепродуктов и фенолсодержащих соединений. При отсутствии на предприятии надлежащей очистки сточных вод возрастают антропогенные нагрузки на окружающую среду, связанные с характером промышленной деятельности предприятий.

Традиционно используемые технологические схемы и очистное оборудование большинства заводов к настоящему времени морально и физически устарели и не обеспечивают возросших требований к качеству очищенной воды, поэтому усовершенствование технологий по очистке СВ от фенола с использованием эффективных комплексных решений, позволяющих достичь нормативных требований к качеству очищаемой воды при всей совокупности сопутствующих фенолу загрязнений, является актуальной задачей.

При обследовании существующего производства были отобраны пробы фенолсодержащих сточных вод, которые сливаются в химически загрязненную канализацию после обследуемого цеха и пробы сточных вод на выходе с локальных заводских очистных сооружений, поступающих на дальнейшую очистку.

Результаты анализов реальных проб, выполненных в аналитической лаборатории ЗАО "БМТ", представлены в табл. 1. Как видно из табл. 1, в сточных водах существуют значительные превышения норм ПДК на слив в канализацию по фенолам, азоту аммонийному, нефтепродуктам. Это обстоятельство определяет высокие штрафные санкции за превышение концентраций фенола в сточных водах предприятия.

Таблица 1: Результаты анализов производственных стоков

п/п

Наименование показателей Ед. изм.  Исходный состав СВ

Состав

после ОС

Требования на слив в канализацию
от 8.08.07 от 19.08.07
 1. Водородный показатель ед.рН  7,45  6,56  7,55 6,5 6,5 - 8,5
 2. Щелочность мг-экв./л  1,9  1,7  6,0  -
 3.

Сульфаты(SO4 2-)

мг/л  9,0  9,3  85  175
 4. Железо общее мг/л  0,52  0,3  0,88  0,3
 5. Фенол мг/л  34,0  24,0  8,0  0,5
 6. Натрий мг/л  49,0  40,2  -  -
 7. ХПК

мгО2

 1460  803  1065  -
 8. Азот аммонийный мг/л  70,0  48,0  5  17
 9. Нефтепродукты мг/л  1,1  21  56,0  2,0
10. Мутность мг/л  8,0  4,2  55,0  -
11. Сухой остаток мг/л  250  210  850  -

Таблица 2: Результаты экспериментов очистки СВ от фенола различными методами

№ п/п  Наименование метода очистки Степень очистки, %
1.

Окислительные, в т. ч:

- пероксидом водорода на катализаторе сидерит FeCO3

- озоном

- гипохлоритом натрия

35-50

12-46

до 65

2

Сорбционные методы

- полимерный сорбент Уремикс-913 (модифицированный ППУ)

- уголь активированный HydroffinCC12*40

16-25

97,7-98

3. Метод обратного осмоса (при рН ≥ 10)  85-90
4

Электрохимические методы

- электрокоагуляция

- электрофлотодеструкция (с добавлением раствора поваренной соли)

70-75

99-100


В ходе экспериментальных работ изучено влияние различных факторов на эффективность очистки реальных СВ по всем отмеченным выше направлениям. Исследования проводилось на лабораторных установках в широком диапазоне изменения основных параметров типовых процессов. Сравнительные данные по степени очистки в оптимальных режимах при концентрации фенолсодержащих соединений в исходных стоках 24-65 мг/л представлены в табл. 2.

Учитывая, что сточные воды НХЗ содержат большой спектр загрязняющих веществ, кроме фенола, результаты постадийной обработки позволили предложить комплексную технологическую схему для очистки по всему спектру примесей. Ниже представлены результаты лабораторных исследований по основным стадиям комплексной очистки.

Обратноосмотическое обессоливание. Для очистки сточных вод непосредственно от фенола метод обратного осмоса широко не применяется, так как обратноосмотические мембраны имеют низкую селективность по фенолу (до 65%). Но в сточных водах цеха НХЗ фенол находится в основном в форме фенолята натрия, который относительно хорошо задерживается мембраной. Экспериментальные работы по мембранной очистке СВ проводились на лабораторной установке, схема которой представлена на рис.1.

Е - емкость исходной сточной воды

Н - насос

Р1, Р2- манометры

ММ - модуль мембранный


Рис.1: Принципиальная схема лабораторной установки

Описание работы установки

Исходная сточная вода из емкости Е насосом Н подавалась на модуль мембранный ММ, где под действием рабочего давления происходило разделение на фильтрат, который собирался в отдельную емкость и концентрат, который возвращался в исходную емкость для концентрирования. Давление регистрировалось манометрами Р1 и Р2.

Условия проведения эксперимента. Тип мембранного элемента – обратноосмотический АК 2540 ТF (или аналог Hydronautics ESPA 1-2540), материал мембраны – полиамид,

Площадь фильтрации 3 м2

Давление на входе Р1


Информация о работе «Очистка сточных вод от фенола электрохимическим окислением»
Раздел: Экология
Количество знаков с пробелами: 30153
Количество таблиц: 3
Количество изображений: 9

Похожие работы

Скачать
57377
6
0

... и аминокислоты в ходе дальнейшего озонирования могут образовывать высокотоксичные соединения. Метод обработки хлором и хлорсодержащими агентами Одним из эффективных методов очистки сточных вод от фенолов является окисление «активным хлором». Установлено, что в зависимости от дозы «активного хлора» образуются хлорпроизводные фенола . 2-хлорфенол; 2,6-дихлорфенол, трихлорфенол. Увеличение ...

Скачать
80340
17
4

... с 8,3 до 0,03 мг/л, что ниже ПДК, степень очистки 99,6 % поэтому возможно использовать реагентную очистку в этом случае. Глава 4. Экономическая часть В данной работе проводилась очистка сточной воды машиностроительного предприятия , в процессе которой было использовано оборудование, химическая посуда, химические реактивы. В данной главе просчитаны общие затраты за год на очистку сточных вод ...

Скачать
163980
32
16

... питьевой воды на станциях водоподготовки и обеззараживания сточных и оборотных вод. Производительность свыше 100 кг. активного хлора в сутки  более 100 тыс. кубометров воды в сутки.    3. Расчет экономической эффективности очистки технической воды: 3.1 Определение затрат труда 3.1.1. Определим оплату труда обслуживающего персонала в год Сп = Тм*aз*nм, где Тм – 167 часов –норма времент в ...

Скачать
70645
1
2

... из одного итого же материала, что позволяет повысить ресурс работы аппарата, периодически изменяя полярность электродов. Электрокоагуляцию применяют преимущественно в системах: локальной очистки сточных вод, загрязненных тонкодисперсными и коллоидными примесями, от масел, нефтепродуктов, некоторых полимеров, соединений хрома и других тяжелых металлов. Она находит применение в процессах ...

0 комментариев


Наверх