«Использование обобщений при обучении математике в средней школе»


СОДЕРЖАНИЕ

 

Введение

Обобщение как метод научного познания в обучении математике

Методические особенности использования обобщений в изучении теоретического материала

Обобщение определений математических понятий и теорем

Подведение под понятие

Расширенные определения понятий

Расширенные теоремы-свойства понятий

Роль расширенных определений и теорем в процессе обучения

Возможные обобщения теоремы

Обобщения при решении задач на уроках математики

Обобщение в преподавании математики

Взаимосвязь обобщения и анализа

Обобщение как пример варьирования при поиске решения задач

Структурное представление технологии формирования обобщенного подхода к решению математических задач

Обобщение как эвристический прием решения нестандартных задач

Урок обобщения и систематизации знаний

Заключение

Литература


ВВЕДЕНИЕ

 

Известно, что математика оперирует определенными «идеальными» объектами. Однако все эти математические объекты отражают свойства материальных предметов и законы материального мира; их идеальный характер означает просто отвлечение от несущественных в момент рассмотрения свойств материальных вещей, благодаря чему исследуемые свойства выступают в наиболее общем и чистом виде. Поэтому все математические понятия и положения представляют собой знание наиболее глубоких и общих свойств реальной действительности.

В процессе познания законов природы математик пользуется особыми математическими средствами, научными методами исследования. В процессе обучения учащиеся также ставятся в положение первооткрывателей математических истин (самостоятельно или с помощью учителя) и поэтому научные методы математического исследования в то же время служат и методами учебной работы учащихся.

Основными методами математического исследования являются:

1)  наблюдение и опыт;

2)  сравнение;

3)  анализ и синтез;

4)  обобщение и специализация;

5)  абстрагирование и конкретизация.

В данной курсовой работе будет изучен такой метод математического исследования, как обобщение, и выявлено его место и значение в преподавании, так как процесс изучения математики в школе неотделим от процесса ее преподавания.


ОБОБЩЕНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ В ОБУЧЕНИИ МАТЕМАТИКЕ.

 

Г.И. Саранцев по характеру учебно-познавательной деятельности и организации содержания материала выделяет следующие методы обучения математике:

·  индуктивно-репродуктивный (учитель создает такую ситуацию, в которой ученик воспроизводит понятие или теорему в процессе рассмотрения частных случаев. Например, посредством решения задач на выделение ситуаций, удовлетворяющих условию теоремы, или решение задачи (изучение теоремы) осуществляется по плану, предложенному учителем);

·  индуктивно-эвристический (метод предполагает самостоятельное открытие фактов в процессе рассмотрения частных случаев. Например, упражнения на умножение степеней с одинаковым основанием приводят к открытию определения произведения степеней с одинаковыми основаниями);

·  индуктивно-исследовательский (метод заключается в проведении исследований различных феноменов посредством изучения их конкретных проявлений. Например, изучая свойства четырехугольников в зависимости от наличия у них осей симметрии, приходим к таким видам четырехугольника, как прямоугольник, ромб, квадрат);

·  дедуктивно-репродуктивный (метод предполагает воспроизведение частных случаев в процессе решения задач, где используется общее положение. Например, теорема о сумме смежных углов воспроизводится посредством решения задач на нахождение одного из смежных углов, если задан другой);

·   дедуктивно-эвристический (метод заключается в открытии частностей какого-либо факта при рассмотрении общего случая. Примером проявления этого метода может служить решение любой конкретной задачи на применение какой-либо теоремы);

·  дедуктивно-исследовательский (Сутью этого метода обучения является организация исследований посредством дедуктивного развития учебного материала. Например, аксиоматический метод, метод моделирования, решение задач на применение теорем);

·  обобщенно-репродуктивный (цель достигается путем воспроизведения изученных фактов. Например, усвоение векторного метода предполагает овладение действиями перевода геометрического языка на векторный и обратно, сложения и вычитания векторов, представления вектора в виде суммы, разности векторов и т. п.);

·  обобщенно-эвристический (метод предполагает создание учителем такой ситуации, в которой ученик самостоятельно (или с небольшой помощью учителя) приходит к обобщению. Например, измеряя стороны и углы произвольных треугольников, ученики могут открыть следующую зависимость между углами и сторонами треугольника: против большей стороны треугольника лежит больший угол и наоборот);

·  обобщенно-исследовательский (метод предполагает наличие в учебном материале ситуаций, исследование которых приводит к обобщенному знанию. Например, рассматривая различные случаи расположения вписанных в окружность углов, можно прийти к известной теореме о том, что вписанный угол измеряется половиной дуги, на которую он опирается).


МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ ОБОБЩЕНИЙ В ИЗУЧЕНИИ ТЕОРЕТИЧЕСКОГО МАТЕРИАЛА

 

Обобщение определений математических понятий и теорем

 

Подведение под понятие

Важной особенностью математики как дедуктивной системы является то, что все понятия, за исключением основных, вводятся посредством определений. В определениях указываются некоторые специфические свойства понятий, называемые часто их признаками, по которым можно определить, принадлежит ли данный объект или отношение к объему этого понятия. Остальные свойства определяемых понятий устанавливаются в рассматриваемых о них теоремах. Одни из них дают достаточные условия существования данного понятия, а другие – необходимые условия существования данного понятия. Признаки понятий, выраженные посредством определений и теорем, обычно представляют собой различные простые высказывания, соединенные различными логическими операциями (связками). В каждом определении и в условии каждой теоремы признаки, дающие достаточные условия существования соответственного понятия, связаны связкой «и», т. е. образуют конъюнкцию. По этой причине, чтобы установить, принадлежит ли данный объект (или отношение) множеству объектов (или отношений), составляющих объем соответственного понятия, достаточно показать, что все его признаки имеют место в определении или условии одной из этих теорем. Деятельность, посредством которой доказывается, что определенный объект или отношение принадлежит соответственно множеству объектов или отношений, составляющих объем данного понятия, называется «подведением под понятие». В процессе решения задач почти всегда приходится устанавливать, что определенные объекты или отношения принадлежат объемам соответственных понятий, чтобы было возможно потом применить к ним теоремы, представляющие собой необходимые условия существования этих понятий. Именно этим способом, по известным свойствам данных объектов или отношений устанавливаются их другие, новые свойства.

Расширенные определения понятий

Если о некотором математическом понятии известно одно или больше определений и рассмотрены теоремы, дающие достаточные условия его существования, то отдельные конъюнкции признаков в этих определениях и теоремах образуют дизъюнкцию. Поэтому «подведение под понятие» можно алгоритмизировать. Для этой цели достаточно отдельные конъюнкции признаков в определениях и соответственных теоремах связать между собой в сложном высказывании посредством применения связки «или». Теперь достаточно проверить наличие каждой конъюнкции признаков, пока установится хотя бы одна. Такое сложное высказывание, представляющее собой дизъюнкцию признаков некоторого понятия, выраженных в отдельных определениях и теоремах, дающих достаточные условия существования этого понятия, называют расширенным определением существующего понятия. Так как в процессе обучения сразу не рассматриваются все теоремы, дающие достаточные условия существования соответственных понятий, их расширенные определения усложняются постепенно.

Приведем пример расширенного определения параллелограмма, которое представляет собой определение типа «от рода к виду».

Четырехугольник  - параллелограмм , если:

1)   и , или

2)   и , или

3)   и , или

4)   и  и  - точка пересечения диагоналей  и  .

5) 

Короче это расширенное определение можно записать так:

.

Это высказывание будет истинным в силу закона логики:

.

Если обозначить через  предикат, выражающий свойство четырехугольника «быть параллелограммом», то получим логическую функцию, заданную на множестве , составляющем объем родового понятия «четырехугольник». Каждый из признаков понятия «параллелограмм» можно также рассматривать как логическую функцию, заданную на том же множестве , так как каждым признаком задается свойство определенного подмножества множества .

Если обозначить эти логические функции через , , , , , то определение понятия «параллелограмм» можно записать в виде:

 

.

Тогда о произвольном, но фиксированном четырехугольнике  получаем высказывание:

,

которое истинно, если истинна хотя бы одна из составляющих его дизъюнкций. В этом случае и можно утверждать, что произвольный, но фиксированный четырехугольник принадлежит множеству, представляющему объем понятия «параллелограмм».

Все, что было сказано выше об объектах, можно повторить и об отношениях, используя уже двухместные, трехместные и прочие предикаты.

Расширенные теоремы-свойства понятий

До сих пор мы рассмотрели применение теорем, дающих достаточные условия существования соответственных понятий. Рассмотрим теперь теоремы, которые дают необходимые условия существования данного понятия.

Обозначим через  предикат «быть параллелограммом », через  - множество, на котором определен этот предикат. Каждое необходимое свойство понятия «параллелограмм» можно рассматривать как логическую функцию, заданную на множестве .

Если обозначить эти логические функции через , то расширенную теорему о свойствах параллелограмма можно записать так:

.

Если произвольный, но фиксированный четырехугольник  принадлежит объему понятия «параллелограмм», то в силу закона логики:


мы можем быть уверены, что  обладает свойствами .

Аналогичные расширенные определения и расширенные теоремы о свойствах можно поострить и для многих других понятий школьного курса математики (понятия конгруэнтности отрезков, углов, треугольников; параллельности прямых; понятия прямоугольник, ромб, квадрат, трапеция; параллельность прямой и плоскости, плоскостей; понятие корня квадратного уравнения; возрастающей и убывающей функции и т. д.).

Роль расширенных определений и теорем в процессе обучения

В процессе обучения математике целесообразно как можно чаще применять такие логические конструкции изучаемого материала, как расширенные определения и теоремы.

Чтобы лучше понять расширенных определений и расширенных теорем – свойств в обучении, отметим следующее. В традиционной методике после определения понятия рассматривались обычно весьма случайно отобранные теоремы, среди которых наряду с теоремами-признаками выступали и теоремы-свойства; при этом и те и другие теоремы не представляли собой логически организованной системы. Поэтому, применяя те или иные теоремы к решению задач, лишь немногие учащиеся оказывались способными самостоятельно использовать рассмотренное понятие или относящуюся к нему теорему при решении новых задач или изучении новых теорем.

Конструируя в процессе обучения все более широкие определения некоторого понятия или все более широкие совокупности теорем-свойств, мы тем самым устанавливаем органическую связь между свойствами понятия, отраженными в его определении, и другими свойствами, присущими только этому понятию. Доказав, что данный конкретный объект принадлежит к объему данного понятия, учащиеся актуализируют вои знания об изученном понятии, расширяют объем этих знаний, а значит, и возможности их приложения. Поэтому в процессе изучения понятий, аксиом и теорем рекомендуется сопоставлять вместе с учащимися постоянно дополняющиеся «списки», представляющие расширенные определения важнейших математических понятий или теорем-свойств.

Помимо логической организации изучаемого материала в сознании школьников, отмеченная выше методика работы с понятиями и теоремами делает сам процесс изучения математической теории более организованным и более естественным. Если учитель следует этой методике, его ученики будут ожидать, что после введения и определения нового понятия будут изучаться те его свойства, которые наряду с определение дадут возможности обнаружить это понятие в новой ситуации, а также использовать те свойства этой ситуации, которые имеют место. Если установлено наличие в ней данного понятия. Тем самым изучение теоремы и определения представляются учащимся в единой, взаимосвязанной системе, а не как случайно собранные вместе утверждения.

Возможные обобщения теоремы

Познакомимся с некоторыми способами обобщения, которые будем иллюстрировать утверждениями и задачами.

1.  Обобщение по размерности. Известно следующее утверждение:

 

Если , то для любой точки  существуют такие числа  и , что

 и .


Пользуясь обобщением по размерности, приходим к утверждению:

Если  лежит в плоскости , то для любой точки  найдутся такие числа , , , что

 и .

2.  Обобщение путем отбрасывания условий. Данный способ особенно эффективен при решении задач. В частности, он используется тогда, когда не удается решить какую-либо задачу. С этой целью мы отбрасываем какое-либо условие или заменяем его на более слабое, а потом решаем новую задачу:

 

Доказать, что при  выполняется неравенство

.

Здесь может быть отброшено условие . Тогда, введя функцию  при  и используя производную, легко устанавливаем, что  при .

3.  Обобщение на основе рассмотрения частных случаев. Этот метод особенно эффективен в том случае, если желательно угадать ответ. Рассмотрим известный пример:

 

Найти , если .

Обращаемся к частным случаям:

Это позволяет обобщить утверждение, высказав гипотезу, что , а потом ее и доказать.

4.  Обобщение на основе метода доказательства. В ходе поиска решения задачи или доказательства теоремы мы нашли нужный метод. Анализируя метод, выясним, что он может быть использован в более общей ситуации. Это позволяет сформулировать и доказать обобщение утверждения.

Известна задача: Если в параллелограмме соединить середины смежных сторон, то полученный четырехугольник – параллелограмм.

Анализируя метод доказательства, можно получить известное обобщение.

5.  Обобщение путем изменения. Анализируя объекты, которые входят в известное утверждение, заменяем их на другие и пытаемся сформулировать и доказать обобщения.

Обратимся к теореме Виета. В условии речь идет о трехчлене . Что можно менять? Это зависит от человека, который пытается обобщать, а точнее, какие объекты он увидит. Дело это творческое, и не существует единого рецепта. Обратимся к записи, где выделена часть объектов, которые могут быть изменены:

Без труда можно сформулировать возможные обобщения.


Информация о работе «Использование обобщений при обучении математике в средней школе»
Раздел: Математика
Количество знаков с пробелами: 45623
Количество таблиц: 1
Количество изображений: 2

Похожие работы

Скачать
8913
0
0

... Составные части методики преподавания математики Методика преподавания математики - дисциплина, которая занимается разработкой целей, содержания, средств, форм и методов обучения математике в учебных заведениях различных типов. Учебный курс методики преподавания математики состоит из двух разделов: общая методика и частные методики (методики изучения отдельных учебных предметов). Цели обучения ...

Скачать
62932
6
1

... a1 * b1 = a(1 + 0.2) * b(1 – 0.2) = ab – 0.04ab. Таким образом, площадь прямоугольника уменьшится в этом случае на 4%. Однако следует помнить, что широкое применение аналогии в процессе обучения математике является одним из эффективных приемов, способных пробудить у учащихся живой интерес к предмету, приобщить их к тому виду деятельности, который называют исследовательским. Кроме того, широкое ...

Скачать
104362
23
0

... направлены на его практическую реализацию. Таблица 1.2.1. Дифференциация обучения.   Внешняя Внутренняя Самодифференцировка учащихся в соответст­вии с их уровнем обученности ( по решению задач различной слож­ности) Спецшколы Классы с углубленным Изучением математики учитель определяет уровень развития и ...

Скачать
63353
1
0

... учителя); продолжается работа по самообу­чению. Наиболее глубоко и полно система учебной работы по разви­тию самостоятельности и творческой активности школьников реализуется при изучении факультативных курсов по математике. 2. ОБУЧЕНИЕ ЧЕРЕЗ ЗАДАЧИ Метод обучения математике через задачи базируется на сле­дующих дидактических положениях: 1) Наилучший способ обучения учащихся, дающий им ...

0 комментариев


Наверх