Содержание:

Введение

1.  Радиопередатчики на основе цифровых контроллеров информационного тракта

2.  Радиопередатчики с прямым цифровым формированием высокочастотных сигналов

Заключение

Список литературы


Введение

Радиопередающие устройства (РПдУ) применяются в сферах телекоммуникации, телевизионного и радиовещания, радиолокации, радионавигации. Стремительное развитие микроэлектроники, аналоговой и цифровой микросхемотехники, микропроцессорной и компьютерной техники оказывает существенное влияние на развитие радиопередающей техники как с точки зрения резкого увеличения функциональных возможностей, так и с точки зрения улучшения ее эксплуатационных показателей. Это достигается за счет использования новых принципов построения структурных схем передатчиков и схемотехнической реализации отдельных их узлов, реализующих цифровые способы формирования, обработки и преобразования колебаний и сигналов, имеющих различные частоты и уровни мощности.

В области телекоммуникаций и вещания можно выделить следующие основные непрерывно возрастающие требования к системам передачи информации, элементами которых являются РПдУ:

- обеспечение помехоустойчивости в перегруженном радиоэфире;

- повышение пропускной способности каналов;

- экономичность использования частотного ресурса при многоканальной связи;

- улучшение качества сигналов и электромагнитной совместимости.

Стремление удовлетворить этим требованиям приводит к появлению новых стандартов связи и вещания. Среди уже известных GSM, DECT, SmarTrunk II, TETRA, DRM и др.

 


1. Радиопередатчики на основе цифровых контроллеров информационного тракта

В настоящем разделе речь пойдет о радиопередатчиках, у которых низкочастотные модулирующие и управляющие сигналы вырабатываются специализированными цифровыми сигнальными процессорами, а сама модуляция осуществляется в аналоговых каскадах, работающих на высоких рабочих или промежуточных частотах. Цифровые сигнальные процессоры такого типа называются контроллерами информационного тракта (Baseband controller). Они являются специализированными ИМС, выполняющими в передатчиках и приемопередатчиках (трансиверах) целый ряд функций, основными из которых являются следующие.

1. Преобразование поступающей в передатчик аналоговой (речевой) информации в цифровую форму встроенным АЦП и дальнейшая ее обработка перед подачей на модулятор - фильтрация, кодирование, накопление и сжатие, объединение в пакеты (Burst encoding). Формирование пакетов осуществляется с добавлением идентификационной информации, управляющих данных, синхронизирующих последовательностей, данных для проверки правильности принятого пакета и пр. Все необходимые для этого данные хранятся в ПЗУ контроллера или получаются контроллером из принимаемого от других станций сигналов. Например, «личный» аутентификационный код передатчика хранится в ПЗУ, а в эфир передается другой код, вычисленный контроллером по встроенному алгоритму с использованием «личного» кода и принятого от базовой станции кодового запроса (случайного числа).

2. Формирование цифрового модулирующего сигнала и преобразование его в аналоговую форму с помощью встроенного ЦАП для подачи на модулятор.

3. Управление каскадами передатчика - режимами по постоянному току, коэффициентами передачи (в системах автоматической регулировки мощности сигнала и защиты транзисторов выходных каскадов), подключением резервных блоков. Для этого контроллер содержит встроенные ЦАП и АЦП и средства обмена данными с внешними ЦАП и АЦП. Управление выходной мощностью передатчика необходимо для поддержания ее неизменной величины в случае работы с сигналами с постоянной огибающей, а также для формирования огибающей РЧ импульсов в соответствии с определенной временной маской при работе в пакетном режиме.

4. Переключение прием-передача.

5. Управление синтезатором частоты - сменой рабочей частоты, ее подстройкой, синхронизацией для работы в системе с другими станциями.

6. Осуществление пользовательского интерфейса - обмен данными с дисплеем, индикаторами, клавиатурой, внешним управляющим компьютером, а также с периферийными устройствами, имеющими цифровое управление. Сопряжение с телефонной сетью общего пользования или сетью ISDN.

7. Временная синхронизация для работы в системе передачи информации с множественным доступом в качестве абонентской или базовой станции. Межсистемная синхронизация. В частности, если в качестве примера цифрового передатчика рассматривать передатчик абонентской части системы DECT, его работа подчиняется трем типам синхронизации TDMA - слотовой синхронизации (с длительностью слота 416,7 мкс, за которые передается 480 бит), кадровой синхронизации (1 кадр равен 24 слотам) и мультикадровой (160 мс) синхронизации.


Рис. 1.1.

Наиболее обобщенная структурная схема приемопередатчика (трансивера) с контроллером информационного тракта приведена на рис. 1.1. Она включает функции, перечисленные выше. Варианты внутренней структуры контроллера информационного тракта приведен на рис. 1.2. Это упрощенная структура ИМС PCD87550 фирмы Филлипс, которая является контроллером информационного тракта цифровых радиопередатчиков системы беспроводной передачи данных «Bluetooth» (рис. 1.2.а) и структурная схема baseband-контроллера AD6526, предназначенного для построения трансиверов стандартов GSM/GPRS (рис. 1.2б). Вычислительным ядром этих контроллеров является специализированный процессор ARM TDMI, управляющий контроллером связи, который, в свою очередь, через радиоинтерфейс управляет работой трансивера, получает и передает через него данные. Под радиоинтерфейсом здесь имеется в виду схема сопряжения цифрового контроллера связи с аналоговой частью трансивера.

Остальные блоки, показанные на рис. 1.2а, особых пояснений не требуют: это кодек речи, ЦАП для управления режимами каскадов трансивера, внутренний тактовый генератор, память, интервальный таймер, а также богатый выбор интерфейсов для связи с периферийными устройствами (например, дисплеем, клавиатурой) и внешним управляющим компьютером.

Контроллер AD6526 является более специализированным, поэтому в него введены такие блоки, как интерфейс SIM-карты, интерфейсы дисплея, клавиатуры и подсветки, часы реального времени и др. Его блоки можно разделить на три основные группы: подсистема управляющего микропроцессора (MCU), подсистема сигнального процессора (DSP), подсистема периферии.

Рис. 1.2а.

Рис. 1.2б.

Для получения модулированных сигналов с рабочей частотой в радиопередатчиках с контроллерами информационного тракта используют несколько типов структурных схем радиочастотных трактов. Приведем здесь самые распространенные из них.

1. Передатчики с прямой модуляцией и прямой квадратурной модуляцией характеризуются тем, что генератор, управляемый напряжением (ГУН) вырабатывает колебания с рабочей частотой передатчика (например, для системы DECT около1900 МГц, а для Bluetooth - 2.4 ГГц), а модуляция происходит путем воздействия на сам ГУН или его выходной сигнал. В передатчиках с прямой модуляцией (рис. 1.3а) реализуются виды модуляции с постоянной огибающей, например, частотная манипуляция (N-FSK), а в передатчиках с прямой квадратурной модуляцией (рис. 1.3б) возможно формирование любых узкополосных амплитудно-фазовых видов модуляции, например многопозиционной квадратурной амплитудной модуляции (N-QAM). Интегральные квадратурные СВЧ-модуляторы были рассмотрены в предыдущем разделе.

Рис. 1.3.

Схемы с прямой модуляцией и прямой квадратурной модуляцией получаются предельно простыми, и это является их основным достоинством, но при повышенных требованиях к качеству (спектральной чистоте) сигнала передатчика или его экономичности могут оказаться существенными следующие их недостатки:

·  затягивание (т.е. изменение) частоты ГУН при изменении параметров нагрузки, которой для него является усилитель мощности;

·  смещение частоты ГУН за счет изменения его питающего напряжения, которое может претерпевать скачки в моменты включения усилителя мощности;

·  затягивание частоты ГУН за счет паразитного влияния сигнала усилителя мощности на его управляющий вход;

·  паразитное просачивание сигнала несущей от ГУН на выход передатчика;

·  значительное потребление энергии квадратурным модулятором СВЧ диапазона.

Большинство из этих недостатков обусловлено тем, что ГУН и усилитель мощности работают на одной и той же, достаточно высокой частоте. Стремление устранить эти недостатки привело к разработке других видов модуляции.

2. Прямая модуляция со сдвигом или удвоением частоты применяется также в тех случаях, когда требуется получить простую схему генераторного тракта. Прямая модуляция со сдвигом частоты (рис. 1.4а) отличается тем, что рабочая частота, подаваемая на квадратурный модулятор, формируется как сумма или разность частот двух генераторов, один из которых опорный, а другой - ГУН. Поскольку на выходе этой схемы возможно появление паразитных продуктов преобразования, фильтр должен обеспечивать необходимую избирательность.

Рис. 1.4.

Прямая модуляция с удвоением частоты (рис. 1.4б) не требует такого сложного фильтра, но могут возникнуть дополнительный фазовый шум и паразитная амплитудная модуляция, свойственные умножителям частоты. Все же, качество сигнала, обеспечиваемое прямой модуляцией с удвоением частоты, достаточно для устройств беспроводной связи стандарта DECT, и промышленностью выпускаются такие устройства (например, комплект ИМС для трансивера DECT PMB2420, PMB2220, фирма Siemens).

3. Непрямая модуляция (модуляция с преобразованием частоты вверх) является наиболее популярной, так как позволяет реализовать все преимущества супергетеродинных передатчиков, в частности, спектральную чистоту сигнала и низкое энергопотребление квадратурного модулятора. Легко предотвратить затягивание частот гетеродина и просачивание его сигнала в антенну. Недостаток -трудность изготовления фильтров, а также необходимость генерирования двух частот генераторов.

Рис. 1.5.

4. Передатчики с петлей трансляции используют петлю ФАПЧ для частотной модуляции и одновременно преобразования частоты модулированного сигнала вверх до значения рабочей частоты. Существует несколько вариантов схем с петлей трансляции, одна из них обсуждалась в главе, посвященной синтезаторам частоты, рис.2.4.2.1. На этом рисунке приведена схема с прямой модуляцией ГУН в петле ФАПЧ, она допускает очень высокую степень интеграции и малое энергопотребление, но имеет некоторый дрейф частоты при размыкании петли ФАПЧ на время прохождения модулирующих импульсов. Существуют более качественные методы модуляции в петле ФАПЧ, например, модуляция частоты опорного сигнала. В любом случае, в этих схемах не удается получить виды модуляции с изменяющимся значением огибающей.

Передатчики, построенные на основе контроллеров информационного тракта, являются весьма экономичными, так как эти контроллеры работают на невысоких тактовых частотах (например, 13 или 26 МГц), могут работать в СВЧ диапазоне, имеют низкий уровень побочных продуктов в спектре выходного сигнала. Они позволяют получить в одном радиоканале сигнал с одной несущей частотой, т.е. реализовать один канал передачи информации. Для современных систем связи этого недостаточно, требуется формировать на выходе передатчика одновременно сигналы с несколькими несущими частотами, что гораздо удобнее, чем складывать в общей нагрузке (в «комбайнере» - сумматоре мощных сигналов, либо в эфире) сигналы нескольких передатчиков. Кроме того, в связи с быстрым развитием техники телекоммуникаций может потребоваться не одна смена стандарта связи без смены комплекта приемо-передающей аппаратуры. Все это возможно в более сложных цифровых радиопередающих устройствах, построенных на основе специализированных цифровых процессоров передатчиков (TSP), которые будут рассмотрены в следующей главе.


Информация о работе «Структурные схемы цифровых радиопередающих устройств»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 20961
Количество таблиц: 1
Количество изображений: 9

Похожие работы

Скачать
7616
1
2

... - частоты, модуляции. Очевидно, что аналоговая схемотехника с такими задачами справиться не в состоянии, и формирование сигналов передатчиков необходимо осуществлять цифровыми методами. Современную радиопередающую технику невозможно представить без встроенных средств программного управления режимами работы каскадов, самодиагностики, автокалибровки, авторегулирования и защиты от аварийных ситуаций ...

Скачать
76676
12
0

... , выходных и межкаскадных КЦ, цепей фильтрации и согласования широкополосных и полосовых усилителей мощности радиопередающих устройств основаны на использовании приведенных однонаправленных моделей транзисторов. 2. ПРОЕКТИРОВАНИЕ ВЫХОДНЫХ ЦЕПЕЙ КОРРЕКции, согласования и фильтрации Построение согласующе-фильтрующих устройств радиопередатчиков диапазона метровых и дециметровых волн основано на ...

Скачать
27916
2
15

... изменения частоты ГУНа;  МГц - средняя частота автогенератора;  кГц - ширина спектра радиочастот передаваемого сигнала; Гц, индекс модуляции , девиация частоты на выходе передатчика Гц. Гц - девиация частоты на выходе автогенератора. 3.5.1 Расчет частотного модулятора по сигналу Расчет ведем исходя из следующих величин: - добротность нагруженного контура;  В - напряжение питания; ...

Скачать
19695
1
0

... – допустимые нестабильности радиочастоты и уровни побочных и внеполосных излучений. Целью данного курсового проекта является разработка передатчика для оконечной станции радиорелейной линии связи с восьмиуровневой относительной фазовой манипуляцией в качестве вида модуляции. При относительной фазовой модуляции в зависимости от значения информационного элемента изменяется только фаза сигнала при ...

0 комментариев


Наверх