Содержание

Введение. 2

1. Характеры.. 3

1.1 Определение характера. Основные свойства характеров. 3

1.2 Суммы характеров. Соотношение ортогональности. 6

1.3 Характеры Дирихле. 8

2. L-функция Дирихле. 13

3. Доказательство теоремы Дирихле. 29


Введение

Простые числа расположены в натуральном ряде весьма неравномерно.

Целью данной работы является доказательство следующей теоремы о простых числах в арифметической прогрессии.

Теорема Дирихле. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.

Пусть

mn + l, n=1,2, …,

прогрессия, удовлетворяющая условию теоремы.

Условие (m, l)=1, наложенные на числа m и e в формулировке теоремы, естественно, поскольку в случае, когда d=(m, l)>1, все члены прогрессии делятся на d и поэтому не являются простыми числами.

Сформулированная теория была впервые высказана Л. Эйлером в 1783 г. В 1798 г. А. Лежандр опубликовал доказательство для четных m, использовавшее, как выяснилось позднее, одну ошибочную лемму.

Полностью доказал теорему в 1837–1839 гг. Петер Густав Лежен-Дирихле (1805–1859), немецкий математик, автор трудов по аналитической теории чисел, теории функций, математической физике.

В 1837 г. вышли две работы Дирихле, посвященные теореме о простых числах в арифметической прогрессии. Они содержали формулировку теоремы в общем виде, однако доказательство приводилось только для случая, когда разность прогрессии есть простое число. В конце второй работы содержится построение характеров для произвольного модуля и некоторые утверждения о том, как можно доказать утверждение L (1,χ)¹0 для неглавных характеров x в одном случае. В 1839 г. Дилихле опубликовал полное доказательство теоремы о простых числах в арифметической прогрессии. С тех пор она носит его имя.


1. Характеры 1.1 Определение характера. Основные свойства характеров

 

Характером (от греческого хараæτήp-признак, особенность) χ конечной абелевой группы G называется не равная тождественно нулю комплекснозначная функция, определенная на этой группе и обладающая тем свойством, что если, АÎG и BÎG

χ (АВ)= χ (А) χ(В).

Обозначим через Е единичные элементы в группе G и через А-1 обратный элемент для АÎG

Характеры группы G обладают следующими свойствами:

1. Если Е-единица группы, то для каждого характера χ

χ (Е)=1 (1.1)

 

Доказательство. Пусть для каждого элемента АÎG справедливо неравенство

c1(А)=c(АЕ)= c(А) χ (Е)

Из этого равенства получим, что c (Е)¹0. Теперь из равенства

c (Е)= c (ЕЕ)= c (Е) c (Е)=1

следует равенство (1.1)

2. c (А) ¹0 для каждого АÎG

Действительно, если бы χ (А) =0 для некоторого АÎG, то


c (А) χ (А-1)= c (АА-1)= χ (Е)=0,

а это противоречит свойству 1.

3. Если группа G имеет порядок h, то Аh=Е для каждого элемента АÎG Следовательно,

1= χ (Е)= χ (Аh)= χ (А)h,

то есть χ (А) есть некоторый корень степени h из единицы.

Характер χ1, обладающий свойством χ1(А)=1 для каждого элемента АÎG, называется главным характером группы G. Остальные характеры называются неглавными.

Лемма 1. Пусть Н подгруппа конечной абелевой группы G, причем G/H – циклическая порядка n, тогда для каждого характера χH– подгруппы Н существует ровно n характеров.

Доказательство. Рассмотрим группу G=gkH, причем gnH=H, gnÎH и gn=h1=1.

Для каждого элемента XÎG существует и притом единственное к=кх и hх=h такое, что если 0£ кх <n, то X= gkх hх=gkh. Возьмем еще один элемент группы G, Y= gmhy, где 0£ m<n. Перемножим эти два элемента

ХY= gк+mhhy.

Определим характер χ (X).

χ (X)= χ (gк h)= χ (gк) χ (n)= χ к (g) χH (h).

В данном выражении неизвестным является χ (g).


χn(g)= χ (gn)= χ (h1)= χH(h1) – данное число.

 

χ (g)= – n корней из 1,

то есть ξјnn(g)= χH(h1), получаем xk(g)= ξјn. Следовательно, x(g)= ξ1, …, ξn

Из полученных равенств получаем:

χ (X)= χk(g) χH(hx)= ξjkxχH (hx)

χ (Y)= χm(g) χH(hy)= ξjkyχH (hy)

Определим умножение характеров

χ (X) χ (Y)= ξjkyχH (hy) ξjk-xχH (hx)= ξjkx+kyχH (hx) χH (hy)= jk+mχH (hhy)

Для того чтобы определение выполнялось, необходимо рассмотреть степень gkx+kx. Возможны два случая:

1) Если 0£ кх + ky<n, то

кх + ky= kxy,; hxhy= hxy.

В этом случае определение выполняется.

2) Если n£ кх + ky<2n-1, то получим

кх + ky = n + kxy..

Тогда

XY= g kx+ky hxhy=ghgkx+ky-n hx hy=gkx+ky-nh1hxhy

В свою очередь 0£ кх + ky – n£n-1 Þ kx+ky – n=kxy, h1hxhy= hxy.


χ (XY) = ξjkх+kу χн (hxу) = ξjkх + kу – nχн (h1) χн(hx) χн (hy) = ξjкх ξj ку ξjn χн (h1) χн(hx) χн (hy) = ξj кх χн (h) · ξj ку χн(hy) = χ (X) χ(Y).

Лемма доказана.


Информация о работе «Теорема Дирихле»
Раздел: Математика
Количество знаков с пробелами: 24736
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
60729
0
3

... . Упражнение. Доказать, что, если на всей оси функция y(х) дифференцируема, а j(х) – дважды дифференцируема, то функция (13.11) действительно удовлетворяет уравнению (13.9) и начальным условиям (13.10). Глава 3. Операционное исчисление   § 14. Преобразование Лапласа Понятие оригинала. Кусочно-непрерывная функция  называется оригиналом, если выполняются следующие условия: 1)  для всех ...

Скачать
29781
51
2

... на ak может быть не более чем ak - 1 (ведь ни одно число не даёт остаток rk), то среди них найдутся два числа, имеющих равные остатки (принцип Дирихле). Пусть это числа M + sd и M + td (0 Ј s Ј ak - 1 и 0 Ј t Ј ak - 1). Тогда их разность (M + sd) - (M + td) = (s - t)d делится на ak, что невозможно, т.к. 0 < |s - t| < ak и d = a1a2...ak - 1 взаимно просто с ak, ибо числа a1, a2, . . ., ak ...

Скачать
41043
1
3

... (72) и (73) положить , то мы получим две интегральные формулы Пуассона для кругового кольца: , (82) , (83) где (74) и (75) – реальные и мнимые части компактной интегральной формулы Вилля-Шварца для кругового кольца [2],  - функция Вейерштрасса,  - угол наклона касательной к  в точке , ,  - периоды, с – произвольная постоянная,  (). Так как функция ) представляется быстро сходящимися ...

Скачать
53043
21
1149

... рациональные числа могут ими разлагаться в бесконечные цепные дроби. Например, имеется разложение =, , , , , … 0,3; 0,42; 0,45; 0,467; … Примечательно то, что квадратические иррациональности разлагаются и в непериодические цепные дроби общего вида. Например, имеется разложение =, , , , , , , … 1; 1,5; 1,38; 1,44; 1,40; … Но самое интересное и важное это то, что в то время как до настоящего ...

0 комментариев


Наверх