Содержание

Задание на курсовую работу ....................................................................... 2

Замечания руководителя .............................................................................. 3

1. Бесселевы функции с любым индексом ................................................... 5

2. Формулы приведения для бесселевых функций ..................................... 10

3. Бесселевы функции с полуцелым индексом ............................................. 13

4. Интегральное представление бесселевых функций с целым индексом .. 15

5. Ряды Фурье-Бесселя ................................................................................. 18

6. Асимптотическое представление бесселевых функций с целым индексом для больших значений аргумента ...................................................................................... 23

Список литературы ...................................................................................... 30


1. Бесселевы функции с любым индексом

Уравнение Лапласа в цилиндрических координатах

Чтобы объяснить происхождение бесселевых функций, рассмотрим уравнение Лапласа в пространстве:

. (1)

Если перейти к цилиндрическим координатам по формулам:

, , ,

то уравнение (1) примет следующий вид:

. (2)

Поставим задачу: найти все такие решения уравнения, которые могут быть представлены в виде произведения трех функций, каждая из которых зависит только от одного аргумента, то есть найти все решения вида:

,

где , ,  предполагаются дважды непрерывно дифференцируемыми.

Пусть  есть решение упомянутого вида. Подставляя его в (2), получим:

,

откуда (после деления на )

.

Записав это в виде:

,

найдем, что левая часть не зависит от , правая не зависит от , ; следовательно, общая величина этих выражений есть некоторая постоянная . Отсюда:

; ;

; ;

.

В последнем равенстве левая часть не зависит от , правая не зависит от ; следовательно, общая величина этих выражений есть некоторая постоянная . Отсюда:

, ;

, .

Таким образом, , ,  должны удовлетворять линейным дифференциальным уравнениям второго порядка:

,

(3)

, ,

из которых второе и третье есть простейшие линейные уравнения с постоянными коэффициентами, а первое является линейным уравнением с переменными коэффициентами нового вида.

Обратно, если , ,  удовлетворяют уравнениям (3), то  есть решение уравнения (2). В самом деле, подставляя  в левую часть (2) и деля затем на , получим:

.

Таким образом, общий вид всех трех решений уравнения (2), которые являются произведением трех функций, каждая из которых зависит от одного аргумента, есть , где , , – любые решения уравнений (3) при любом выборе чисел , .

Первое из уравнений (3) в случае ,  называется уравнением Бесселя. Полагая в этом случае , обозначая независимую переменную буквой  (вместо ), а неизвестную функцию – буквой  (вместо ), найдем, что уравнение Бесселя имеет вид:

. (4)

Это линейное дифференциальное уравнение второго порядка с переменными коэффициентами играет большую роль в приложениях математики. Функции, ему удовлетворяющие, называются бесселевыми, или цилиндрическими, функциями.

Бесселевы функции первого рода

Будем искать решение уравнения Бесселя (4) в виде ряда:

.

Тогда

,

,

,

.

Следовательно, приходим к требованию

или к бесконечной системе уравнений

,

которая распадается на две системы:

 

Первая из них удовлетворится, если взять … Во второй системе  можно взять произвольно; тогда … однозначно определяются (если  не является целым отрицательным числом). Взяв

 ,

найдем последовательно:

,

,

,

и в качестве решения уравнения (4) получим ряд:

Этот ряд, формально удовлетворяющий уравнению (4), сходится для всех положительных значений  и, следовательно, является решением уравнения (4) в области  (в случае целого  в области ).

Функция

(5)

называется бесселевой функцией первого рода с индексом . Она является одним из решений уравнения Бесселя (4). В случае целого неотрицательного индекса  получим:

, (5`)

и, в частности,

. (5``)

Общее решение уравнения Бесселя

В случае нецелого индекса  функции  и  являются решениями уравнения (4). Эти решения линейно независимы, так как начальные члены рядов, изображающих эти функции, имеют коэффициенты, отличные от нуля, и содержат разные степени . Таким образом, в случае нецелого индекса общее решение уравнения Бесселя есть:

. (6)

Если  (целое отрицательное число), то функция, определяемая формулой (5) (учитывая, что  равно нулю для …), принимает вид:

(5```)

или, после замены индекса суммирования  на ,

, (7)

откуда видно, что  удовлетворяет вместе с  уравнению Бесселя

.

Но формула (6) в случае целого  уже не дает общего решения уравнения (4).

Полагая

( – не целое) (8)

и дополняя это определение для  (целое число) формулой:

, (8`)

получим функцию , удовлетворяющую уравнению Бесселя (4) и во всех случаях линейно независимую от  (в случае , где  – целое). Функция  называется бесселевой функцией второго рода с индексом . Общее решение уравнения Бесселя (4) можно записать во всех случаях в виде:

. (9)



Информация о работе «Уравнение и функция Бесселя»
Раздел: Математика
Количество знаков с пробелами: 16512
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
18507
0
1

... К. Лавриновича «Фридрих Вильгельм Бессель, 1784 – 1846: Астроном, геодезист, математик»,[2] а также справочные издания и энциклопедии, в том числе Брокгауза и Евфрона. §1. Начало научной деятельности Бесселя Немецкий астроном и математик Фридрих Вильгельм Бессель родился в небольшом городе Минден на северо-западе Германии в семье мелкого чиновника в 1784 году. С 15 лет должен был встать на ...

Скачать
34911
1
21

... коэффициенты an (x1), bn (x1), an (x2), bn (x2) при помощи гармонического анализа, можно определить коэффициент температуропроводности стержня а2. Глава 3. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ. §3.1. Дифракция излучения на сферической частице.   Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в ...

Скачать
5154
0
3

... В.В. О построении собственных значений и функций одной газодинамической задачи Франкеля // Математическое моделирование. 1990. Т. 2. № 10. С. 100-109. Моисеев Е.И. о решении вырождающихся уравнений с помощью биортогональных рядов // Дифференц. уравнения. 1991. Т. 27. № 1. С. 94-103. Мамедов Я.Н. О некоторых задачах на собственные значения для уравнения смешанного типа // Дифференц. уравнения

Скачать
5268
0
10

... к задаче [6]: найти регулярное в области  решение уравнения (1), непрерывное вместе с производной  в замкнутой области  и удовлетворяющее граничным условиям (4) и . Решение этой задачи задается формулой : где  – функция Грина этой задачи для уравнения . (28) Функция Грина выражается через фундаментальные решения уравнения (28), которые имеют вид: где ; ; – функция Бесселя. Функции ,   ...

0 комментариев


Наверх