Реферат на тему:

"Поверхні"


1.  Класифікація поверхонь

Всі поверхні можна розділити на графічні та геометричні.

До геометричних належать поверхні, утворення яких підпорядковане певним геометричним законам, вони утворюються рухом в просторі прямої або кривої лінії, яка називається твірною. Графічною називається поверхня, закон утворення якої невідомий. У цьому разі поверхня задається графічно, за допомогою певної кількості ліній. Прикладом графічної поверхні може служити поверхня землі, яку ще називають топографічною.

В залежності від форми твірної поверхні ділять на лінійчаті, коли твірною є пряма, та нелінійчаті, коли твірною є крива.

За законом руху твірних можемо мати поверхні з поступовим рухом та обертаючим рухом – поверхні обертання, гвинтовим рухом – гвинтові поверхні.

По признаку розгортання поверхні бувають розгорнутими та нерозгорнутими.

По признаку напрямних, які можуть бути ламаними, прямим або кривими, поверхні бувають граними або кривими.

Якщо поверхня створена правильними багатогранниками, то поверхня буде граною, якщо плоскі криві правильної форми, то поверхні будуть кривими, причому якщо в утворенні приймають участь кола в якості напрямних, то отримуємо поверхні обертання.

Частина простору, яка обмежена з усіх сторін поверхнею, називається тілом.

Висновки по першому питанню:

1.  Всі поверхні можна розділити на графічні та геометричні. До геометричних належать поверхні, утворення яких підпорядковане певним геометричним законам, вони утворюються рухом в просторі прямої або кривої лінії, яка називається твірною. Графічною називається поверхня, закон утворення якої невідомий.

2.  Якщо поверхня створена правильними багатогранниками, то поверхня буде граною, якщо плоскі криві правильної форми, то поверхні будуть кривими, причому якщо в утворенні приймають участь кола в якості напрямних, то отримуємо поверхні обертання.

2. Креслення багатогранників та тіл обертання

Щоб накреслити складну технічну деталь, потрібно, насамперед, уявити собі її форму. Для цього зручно уявно розчленити деталь на окремі геометричні тіла і навчитися будувати проекції цих простих геометричних тіл. Зобразити й прочитати креслення геометричного тіла означає не тільки вміти за розмірами побудувати проекції, а й провести повний аналіз фігури. Останнє означає, що треба вміти визначати й показати на кресленні ребра, грані, вершини, твірні, їх розташування між собою і відносно площин проекцій, показати видимі й невидимі елементи, знайти проекції точок, що лежать на поверхні тіла, проставити розміри тощо.

Геометричні тіла, обмежені плоскими фігурами – багатокутниками, називаються багатогранниками. Їх плоскі фігури називаються гранями, а лінії перетину граней – ребрами. Точки перетину ребер, або точки, в яких сходяться грані, називаються вершинами багато-гранника. Кут, утворений гранями, які сходяться в одній вершині, буде багатогранним кутом. Багатогранниками, наприклад, є призма й піраміда. На практиці найчастіше зустрічаються такі тіла обертання: циліндр, конус, сфера, кільце, тор.

Проекції призм. Якщо твірна ковзає по довільній напрямній замкненій ламаній лінії так, що окремі її положення залишаються між собою паралельними, то утворюється призматична поверхня.

Призмою називається багатогранник, який утворюється перерізом призматичної поверхні двома паралельними площинами.

Дві грані призми є однаковими багатокутниками з відповідно паралельними сторонами, а бічні грані в загальному випадку – паралелограмами.

Призма, в якої бічні ребра перпендикулярні до основи, називається прямою і похилою, коли вони не перпендикулярні.

Бічні грані прямої призми – прямокутники, похилої – паралелограми. Призми поділяються на правильні і неправильні.

Правильною називається призма, в основі якої лежить правильний багатокутник.

За формою основи призми бувають трикутні, чотирикутні, шестикутні і т.д. Коли в основі призми лежить прямокутник або паралелограм, вона називається паралелепіпедом.

Прямий паралелепіпед, в основі якого лежить прямокутник, називається прямокутним.

Побудова проекцій правильної прямої шестикутної призми розпочинається з виконання її горизонтальної проекції – правильного шестикутника. Із вершин цього шестикутника проводять вертикальні лінії зв’язку і будують фронтальну проекцію нижньої основи призми. Ця проекція зображується відрізком горизонтальної прямої. Від цієї прямої вверх відкладають висоту призми і будують фронтальну проекцію верхньої основи. Потім накреслюють фронтальні проекції ребер – відрізки вертикальних прямих, що дорівнюють висоті призми. Фронтальні проекції передніх і задніх ребер співпадають. Горизонтальні проекції бічних граней зображуються у вигляді відрізків прямих. Середня бічна грань 1234 зображується на площині π2 в дійсному вигляді, а на площині π3 – у вигляді відрізка прямої лінії. Фронтальні і профільні проекції решти граней зображуються спотворено.

Проекції пірамід. Якщо твірна лінія, що проходить через постійну точку, ковзає по замкненій ламаній лінії, то утворюється багатогранний кут, або пірамідальна поверхня. Перерізаючи пірамідальну поверхню площиною, дістають піраміду.

Отже, пірамідою називається багатогранник, одна грань якого є багатокутник, а бічні грані – трикутники, які мають спільну точку – вершину піраміди.

За формою основи піраміди бувають трикутні, чотирикутні, п’ятикутні і т.д.

Піраміда називається правильною, коли в її основі лежить правильний багатокутник і вісь проходить через центр основи.

Бічні грані правильної піраміди – рівнобедрені трикутники.

Найкоротша відстань від вершини до основи називається висотою піраміди.

Якщо піраміду розсікти площиною, паралельною її основі, то та частина піраміди, яка знаходиться між основою і січною площиною, називається зрізаною пірамідою. Сторони верхньої і нижньої основ зрізаної піраміди паралельні між собою. Зрізана піраміда називається правильною, коли в її основах лежать правильні багатокутники.

Побудова проекцій трикутної піраміди розпочинається з побудови основи, горизонтальна проекція якої є дійсним виглядом трикутника.

Фронтальна проекція основи зображується горизонтальним відрізком прямої.

З горизонтальної проекції S1 вершини піраміди проводять вертикальну лінію зв’язку, на якій від осі х відкладають висоту піраміди і одержують фронтальну проекцію S2 вершини. З’єднуючи точку S2 з точками 12,22 і 32 одержують фронтальні проекції ребер піраміди.

Горизонтальні проекції ребер одержують, з’єднуючи горизонтальну проекцію S1 вершини піраміди з горизонтальними проекціями 11,21 і 31 вершин основи.

Нехай, наприклад, задана фронтальна проекція А2 точки А, розташована на грані 12S222 піраміди, і необхідно знайти другу проекцію точки А.

Для розв’язування даної задачі проведемо через А2 допоміжну пряму і продовжимо її до перетину з фронтальними проекціями ребер 12S2 і 22S2 в точках N2 і М2. Потім з точок N2 і М2 проведемо лінії зв’язку до перетину з горизонтальними проекціями 11S1 і 21S1 цих ребер в точках N1 і М1. З’єднавши N1 з М1, одержимо горизонтальну проекцію допоміжної прямої, на якій за допомогою лінії зв’язку знайдемо шукану горизонтальну проекцію А1 точки А. Профільну проекцію цієї точки знайдемо звичайним способом, використовуючи лінії зв’язку.

Проекції циліндрів. Бічна поверхня прямого кругового циліндра утворюється рухом відрізка АВ навколо вертикальної осі по напрямному колу. На рис. 6, а дано наочне зображення циліндра.

Побудова горизонтальної і фронтальної проекцій циліндра показана на рис. 6, б і в.

Побудову розпочинають, зображаючи основу циліндра, тобто двох проекцій кола. Оскільки коло розташоване на площині π1, то воно проекціюється на цю площину без спотворення. Фронтальна проекція являє собою відрізок горизонтальної прямої лінії, який дорівнює діаметру кола основи.

Після побудови основи на фронтальній проекції проводять дві крайні твірні і на них відкладають висоту циліндра. Проводять відрізок горизонтальної прямої, який є фронтальною проекцією верхньої основи циліндра.

Визначення двох відсутніх проекцій точок А і В, розташованих на поверхні циліндра, за однією заданою, наприклад, фронтальною проекцією в даному випадку труднощів не викликає, оскільки вся горизонтальна проекція бічної поверхні циліндра являє собою коло.

Таким чином, горизонтальні проекції точок А і В можна знайти, провівши з даних точок А1 і В2 вертикальні лінії зв’язку до їх перетину з колом в шуканих точках А1 і В1.

Профільні проекції точок А і В будують також за допомогою вертикальних і горизонтальних ліній зв’язку.

Проекції конусів. Бічна поверхня конуса утворена обертанням твірної ВS навколо осі по напрямному колу основи.

Послідовність побудови двох проекцій конуса. Попередньо будують дві проекції основи. Горизонтальна проекція основи – коло. Якщо припустити, що основа конуса лежить на площині p1, то фронтальною проекцією буде відрізок прямої, що дорівнює діаметру цього кола. На фронтальній проекції з середини основи ставлять перпендикуляр і на ньому відкладають висоту конуса. Одержану фронтальну проекцію вершини конуса з’єднують прямими з кінцями фронтальної проекції основи і одержують фронтальну проекцію конуса.

Якщо на поверхні конуса задана одна проекція точки А, то дві інші проекції цієї точки визначають за допомогою допоміжних ліній – твірної, розташованої на поверхні конуса і проведеної через точку А2 або кола, розташованого в площині, паралельній основі конуса.

В першому випадку проводять фронтальну проекцію S2А2F2 допоміжної твірної. Скориставшись вертикальною лінією зв’язку, проведеною з точки F2, розташованої на фронтальній проекції кола основи, знаходять горизонтальну проекцію S1А1F1 цієї твірної, на якій за допомогою лінії зв’язку, проведеної через А2, знаходять шукану точку А1.

У другому випадку допоміжною лінією, проведеною через точку А1, буде коло, розташоване на конічній поверхні і паралельне площині p1. Фронтальна проекція цього кола зображується у вигляді відрізка горизонтальної прямої. Шукана горизонтальна проекція А1 точки А знаходиться на перетині лінії зв’язку, опущеної з точки А2, з горизонтальною проекцією допоміжного кола.

Якщо задана фронтальна проекція В2 точки В розташована на контурній твірній S2К2, то горизонтальна проекція точки знаходиться без допоміжних ліній.

Проекції кулі. Проекції півкулі наведено на рис. 10, б. Горизонтальна проекція – коло радіуса, що дорівнює радіусу сфери, а фронтальна – півколо того ж радіуса.

Якщо точка А розташована на сферичній поверхні, то допоміжна лінія, проведена через цю точку, має бути колом, розташованим в площині, паралельній будь-якій площині проекції. На горизонтальній проекції допоміжного кола, де воно зображується в дійсному вигляді, знаходять, використовуючи лінію зв’язку, шукану горизонтальну проекцію А1 точки А.

Величина діаметра допоміжного кола дорівнює фронтальнім проекції В2С2.

Висновки по другому питанню:

1.  Щоб накреслити складну технічну деталь, потрібно, насамперед, уявити собі її форму. Для цього зручно уявно розчленити деталь на окремі геометричні тіла.

2.  Геометричні тіла, обмежені плоскими фігурами – багатокутниками, називаються багатогранниками. Їх плоскі фігури називаються гранями, а лінії перетину граней – ребрами. Точки перетину ребер, або точки, в яких сходяться грані, називаються вершинами багатогранника.


Информация о работе «Поверхні»
Раздел: Математика
Количество знаков с пробелами: 22648
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
14491
0
9

... спроса плоскостью с постоянным доходом С1 При небольшой величине дохода С1 плоскость постоянных доходов, обозначенная на рисунке 3 цифрами 1 с краями, изображенными пунктирными линиями, пересекает поверхность спроса перпендикулярно оси доходов и параллельно плоскости цена-объем. В результате пересечения плоскости и поверхности спроса получается кривая спроса, имеющая классический вид. Можно с ...

Скачать
12769
1
0

... растет как 1-D, но D = DBL при подходе Минковского и D = DCL > DBL при использовании измерительного циркуля. Может ли размерность D принимать значения, отличающиеся от этих двух величин? 5. Измерение площади самоаффинных фрактальных поверхностей, полученных из графиков функций 5.1. Площадь фрактального рельефа ВH (х, у), найденная с помощью «шарфа» Минковского Мы возвращаемся к размерностям ...

Скачать
31391
10
12

... шероховатости поверхностей, установленные ГОСТ 2789-73. Обозначение шероховатости поверхностей и правила их нанесения на чертеже установлены ГОСТ 2309-73. Структура обозначения шероховатости приведена на Рис.6 Рис.6 Структура знака для изображения шероховатости поверхности При установлении требований шероховатости поверхности рекомендуется применять параметры Ra, Rz, Rmax, tp. ...

Скачать
7543
0
5

... которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxy; при h<0 – гиперболы, пересекающие плоскости Oyz; при h=0 – гипербола вырождается в пару пересекающихся прямых и точка (0;0;0) называется вершиной параболоида; числа p и q – его параметрами. 6. Конус второго порядка. Конусом второго порядка называется поверхность, которая в некоторой

0 комментариев


Наверх