Содержание

Введение

1.  Выбор и обоснование схемы электрической принципиальной

2.  Основные определения теории надежности

3.  Количественные характеристики теории надежности

4.  Расчеты надежности при проектировании РЭА

Спецификация

Литература


Введение

Полупроводниковая электроника – прогрессирующая область науки и техники. Уже в первом десятилетии с момента изобретение транзисторов полупроводниковые приборы нашли широкое применение в самой разнообразной аппаратуре, основательно потеснив вакуумные лампы. Это было связанно с их преимуществом перед последними, такими как малая потребляемая мощность, отсутствие цепей накала, миниатюрное конструктивное исполнение, высокая механическая прочность и практически мгновенная готовность к работе, что позволило коренным образом изменить внешний облик и функциональные возможности аппаратуры. Существенно уменьшились ее габаритные размеры и энергоемкость. В частности, широкое распространение получили малогабаритные переносные радиоприемники, магнитофоны, телевизоры с батарейным питанием. Неизмеримо расширились возможности вычислительной техники: резко возросла вычислительная мощь и быстродействие ЭВМ при значительном снижении габаритных размеров и энергопотребления. Благодаря дискретным полупроводниковым приборам, аппаратура уверенно шагнула на борт самолета, ракеты, проникла в космос, все больше и больше принимая на себя функции управления процессами и различными объектами, являющийся ранее безраздельной областью деятельности человека.

Наибольшее распространение в первую очередь получили цифровые (логические) интегральные микросхемы и схемы памяти, так как их схемотехника основывается на бистабильных переключательных элементах, которые сравнительно легко реализуются в твердотельном исполнении. Сложнее оказалось положение дел с линейными интегральными схемами ввиду существенных ограничений, присущих монолитным интегральным микросхемам, обусловленных наличием паразитных связей через подложку, дискретностью сходных материалов, нестабильность усилительных и шумовых характеристик активных элементов схемы, ограниченным диапазоном номиналов твердотельных резисторов, конденсаторов, а также отсутствием твердотельных индуктивностей.

Внедрение полупроводниковых приборов и интегральных микросхем в радиоэлектронную аппаратуру проходило в условиях преодоления существенных трудностей. Одной из основных при этом была проблема обеспечения высокой надежности функционирования приборов в аппаратуре. Теоретически долговечность идеального полупроводникового прибора исчислялась несколькими сотнями лет. И такое прогнозирование следует считать обоснованием, так как оно базируется на том, что долговечность прибора, в котором отсутствует движущиеся механические части и в качестве активной области используется твердый полупроводник, определяется в основном износостойкостью конструкционных материалов и скорость деградационных физико-химических процессов, стимулируемых прохождением тока через прибор и факторами внешних воздействий. На практике столь многообещающие прогнозы не подтвердились. Реальные полупроводниковые приборы, пришедшие на смену лампам, имели сравнительно низкую долговечность и выходили из строя.

Возникновение проблемы надежности в электроники относят к началу пятидесятых годов, когда развитие техники привело к созданию сложной радиоэлектронной аппаратуры и передачи ей основных функций управления. В этот период специалисты столкнулись с очень частыми отказами аппаратуры и, в первую очередь, за счет ее схемотехнического несовершенства и некачественных элементов. Для преодоления создавшихся трудностей необходим был научно обоснованный подход к обеспечению высокой работоспособности различной аппаратуры и приборов в нее входящих. Этот подход и вылился в создание нового научно направления – науки о надежности.

Основные положения общей теории надежности являются фундаментом для разработки прикладных вопросов надежности в различных областях техники, в том числе и в полупроводниковой электронике.

Большой объем работ, направленных на повышение надежности полупроводниковых приборов и интегральных микросхем, у нас в стране и за рубежом, и достигнутые успехи в этой области обеспечивают в большинстве случаев функционирование приборов в эксплуатации с надежностью, характеризуемой интенсивностью отказов. Однако постоянный рост сложности радиоэлектронной аппаратуры, расширение выполняемых ею управляющих функций выдвигают все более жесткие требования к комплектующим изделиям. Это в свою очередь стимулирует расширение фронта работ в области надежности и вызывает необходимость периодического обобщения получаемых результатов.

Материальной основой всей системы является подсистема сбора данных о надежности и анализ отказов приборов на всех этапах их жизненного цикла. Согласованность всех составляющих системы обеспечения надежности, постоянное совершенствование организационных основ системы должно идти в ногу с прогрессом в области полупроводниковой электроники.


1.  Выбор и обоснование схемы электрической структурной

Блок преобразования кодов предназначен для преобразования двоично-десятичного кода технологических программ в двоичный код и обратное преобразование двоичного кода в двоично-десятичный с целью получения откорректированных перфолент и дубликатов с помощью перфоратора ПЛ.

Блок состоит из субблоков:

SB-443 3.082.443 Э3 – интерфейс;

SB-442 3.082.442 Э3 – общая часть преобразователя;

SB-441 3.082.441 Э3 – преобразование из двоичного кода в двоично-десятичный (2/2-10);

SB-440 3.082.440 Э3 – преобразование из двоично-десятичного кода в двоичный (2-10/2).

ЦП осуществляет управление блоком через регистры, которые имеют адреса:

166620 –РС;

166622 – РД 1 слово;

166624 – РД 2 слово;

Формат РС, разряды:

21 – преобразование 2-10/2, пишется, читается ЦП;

22 – преобразование 2/2-10, пишется, читается ЦП;

Обмен данными между ЦП и блоком осуществляется посредством программных операций.

Поскольку блок БПК и блок умножения имеют один интерфейс, то обращение к блокам определяется разрядом адреса АО4. Для БПК разряд АО4 равен единице, для блока умножения – нулю.

Адреса регистров БПК, пройдя через шинные формирователи (микросхемы D1 - D4), расшифровываются в СА (микросхемы D9, D10, D15) и запоминаются в регистре адреса РА (микросхемы D11, D12 субблока SB-443).

Управляющие сигналы «А00 – А04», «БАЙТ», «ВЫВОД» поступают на общую ячейку преобразователя кодов и используются для записи информации в РД (микросхемы D5 – D11) и РС (микросхемы D13, D14).

Информация с регистров РД может читаться ЦП.

Данные с РД поступают в преобразователи кодов, где в зависимости от вида преобразования, определяемого состоянием разрядов РС, происходит преобразование кодов.


Информация о работе «Определение надежности устройства РЭА»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 14660
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
22672
10
3

... 1.1 – график экспоненциальной характеристики надежности В соответствии с графиком видно, что надежность устройства уменьшается с увеличением времени его работы. Модель экспоненциального распределения часто используется для априорного анализа, так как позволяет не очень сложными расчетами получить простые соотношения для различных вариантов создаваемой системы. На стадии апостериорного анализа ...

Скачать
32325
0
2

... ее модулей или элементов. Резервирование предполагает включение в схему устройства дополнительных элементов, которые позволяют скомпенсировать отказы отдельных частей устройств и обеспечить его надежную работу. Но резервирование эффективно только в том случае, когда неисправности являются статистически независимыми. Различают следующие виды резервирования: постоянное (резервные элементы включены ...

Скачать
29941
0
0

... в неблагоприятных условиях, без предварительной проверки; недостаточное внимание к чистоте оборудования, рабочего места, воздуха и т.д. (что особенно важно в производстве микросхем и сборке точных элементов и устройств); неполный контроль за ходом операций и при выпуске готовой продукции; нарушение режима сложных технических процессов. К эксплуатационным факторам, влияющим на надежность, ...

Скачать
18461
7
0

... . Методы анализа безотказности зависят от того, в каком режиме нагружения находится резерв. Рассмотрим анализ безотказности РЭУ при наличии резервирования замещением с ненагруженным режимом работы резервных элементов. Разобьем схему на 5 узлов по 21 элемент в каждом. Выражения для определения вероятности безотказной работы за время t в случае одного основного элемента и m-1 резервных имеют вид: ...

0 комментариев


Наверх