Доказательство великой теоремы Ферма для четных показателей степени

6302
знака
0
таблиц
0
изображений

Файл: FERMA-2mPF-for

© Н. М. Козий, 2007

Авторские права защищены свидетельствами Украины

№ 27312 и № 28607

 

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ

 

Великая теорема Ферма формулируется следующим образом: диофантово уравнение(http://soluvel.okis.ru/evrika.html):

 

Аn+ Вn= Сn /1/

где n- целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:

 

Аn= Сnn  /2/

Пусть показатель степени n=2m. Тогда уравнение /2/ запишется следующим образом:

 

А2m= С2m –В2m /3/

Для доказательства великой теоремы Ферма используем алгебраическое доказательство теоремы Пифагора.


АЛГЕБРАИЧЕСКОЕ ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРА (Решение уравнения теоремы Пифагора в целых числах)

 

Теорема Пифагора формулируется следующим образом: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

 

С22 + В2, /4/

где: С – гипотенуза; А и В – катеты.

Существуют прямоугольные треугольники, у которых стороны А, В и С выражаются целыми числами. Такие числа называются пифагоровыми.

Рассматривая уравнение теоремы Пифагора как алгебраическое уравнение, докажем, что существует бесконечное количество прямоугольных треугольников, в которых их стороны выражаются целыми числами или, что одно и тоже, уравнение /4/ имеет бесконечное количество решений в целых числах.

Суть теоремы Пифагора не изменится, если уравнение /4/ запишем следующим образом:

 

А2 = С2 –В2 /5/

Для доказательства теоремы Пифагора методами элементарной алгебры используем два известные в математике метода решения алгебраических уравнений: метод решения параметрических уравнений и метод замены переменных.

Уравнение /5/ рассматриваем как параметрическое уравнение с параметром A и переменными B и С. Уравнение /5/ в соответствии с известной зависимостью для разности квадратов двух чисел запишем в виде:

 

А2=(C-B)∙(C+B) /6/

Используя метод замены переменных, обозначим:

 

C-B=M /7/

Из уравнения /7/ имеем:

 

C=B+M /8/

Из уравнений /6/, /7/ и /8/ имеем:

 

А2 =M∙ (B+M+B)=M∙(2B+M) = 2BM+M2 /9/

Из уравнения /9/ имеем:

 

А2- M2=2BM /10/

Отсюда: B = /11/

Из уравнений /8/ и /11/ имеем:

C=  /12/

Таким образом: B = /13/

C  /14/

Из уравнений /11/ и /12/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2 на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2.

Числа А и M должны иметь одинаковую четность.

По формулам /13/ и /14/ определяются числа B и C как переменные, зависящие от значения числа А как параметра и значения числа M.

Из изложенного следует: 1. Квадрат простого числа A равен разности квадратов одной пары чисел B и C (при M=1). 2. Квадрат составного числа A равен разности квадратов одной пары или нескольких пар чисел B и C. 3. Квадрат числа Am равен разности квадратов нескольких пар чисел. 4. Все числа A> 2 являются пифагоровыми.

Таким образом, существует бесконечное количество троек пифагоровых чисел А, В и С и, следовательно, бесконечное количество прямоугольных треугольников, у которых стороны А, В и С выражаются целыми числами.

ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Вариант 1

 

Уравнение /3/ с учетом уравнений /5/ и /6/ запишем следующим образом:

 

А2m= С2m –В2m =(Сm –Вm)∙(Сmm) /15/

Тогда в соответствии с уравнениями /13/ и /14/ запишем:

 

Bm = /16/

Cm /17/

Из уравнений /16/ и /17/ следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа A2m на число M , т. е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа А или A2m. Следовательно, число A2m должно быть равно:

 

A2m = M· D, /18/

где D – целое число.

Тогда : Bm = /19/

А число Cm с учетом уравнения /8/ равно:

 

Cm = Bm + M =  /20/

Тогда из уравнений /19/ и /20/ следует:

 

B =  /21/

C  /22/

Если допустить, что В – целое число, то из уравнения /22/ следует, что число С не может быть целым числом, так как сомножители в скобках в подкоренных выражениях в уравнениях /21/ и /22/ отличаются всего на 1.

 


ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА

Вариант 2

Выше в доказательстве теоремы Пифагора доказано, что все натуральные числа являются пифагоровыми. Следовательно, все натуральные числа распределяются на тройки пифагоровых чисел и, следовательно, все тройки пифагоровых чисел удовлетворяют уравнению /4/:

 

С22 + В2 /23/

Пифагоровы числа (А, В, С) могут быть истолкованы как длины сторон прямоугольного треугольника, а их квадраты могут быть истолкованы как площади квадратов, построенных на гипотенузе и катетах этого треугольника. Умножив приведенное уравнение на С, получим:

 

С32∙ С+ В2· С /24/

Из уравнения /24/ следует, что объем куба раскладывается на два объема двух параллелепипедов. Поскольку очевидно, что в уравнении /23/ А<C и В<C, то из уравнения /24/ следует:

 

С33 + В3 /25/

На всем множестве троек пифагоровых чисел ( а все натуральные числа образуют тройки пифагоровых чисел) при показателе степени n=3 не может быть ни одного решения уравнения /1/:

 

Аn+ Вn= Сn

Следовательно, на всем множестве натуральных чисел невозможно куб разложить на два куба.

Умножив уравнение /23/ на С2, получим:

 

С2∙С22·С2 + В2∙С2 /26/

Все члены этого уравнения представляют собой объемы параллелепипедов:

параллелепипед С2∙С2 имеет в основании квадрат со стороной С и высоту С2;

параллелепипед А2∙С2 имеет в основании квадрат со стороной А и высоту С2;

параллелепипед В2∙С2 имеет в основании квадрат со стороной В и высоту С2.

Следовательно, в соответствии с уравнением /26/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов.

Поскольку, как показано выше, А<C и В<C, то из уравнения /26/ следует:

 

С44 + В4 /27/

В общем случае уравнение /26/ можно записать следующим образом:

 

С2∙Сn-22·Сn-2 + В2∙Сn-2 /28/

Сn2·Сn-2 + В2∙Сn-2 /29/

Следовательно, в соответствии с уравнениями /28/ и /29/ объем одного параллелепипеда разложился на сумму объемов двух параллелепипедов. Поскольку, как показано выше, А<C и В<C, то из уравнения /29/ следует:

 

Сnn+ Вn /30/

 

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при четных показателях степени.


Информация о работе «Доказательство великой теоремы Ферма для четных показателей степени»
Раздел: Математика
Количество знаков с пробелами: 6302
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
3676
0
0

... числах. Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2. ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ Доказательство строим аналогично вышеизложенному доказательству для нечетных показателей степени. Любое четное число, за исключением числа p=2q, является произведением числа p на нечетные, ...

Скачать
41122
2
0

... случая (K, Р) = 1 [см. (1.49)]. Пришли к противоречию: левые части (1.44) и (1.45) делятся на K 2, а правые их части не делятся на K 2. Проблема Ферма (первый и второй случаи) для всех простых показателей Р = 6n + 1 доказана.   1.7 Второй случай ПФ для простых показателей вида 6n + 5   В это разделе в качестве модулей будем использовать числа K и K2. Расширим представление о модуле K еще ...

Скачать
82482
0
0

... алгебраических чисел. – М. – Наука. – 1982. - С. 13).   Вывод: Великая теорема Ферма для степени простом доказана.   ********   Утверждение 2, частным случаем которого является Великая теорема Ферма, для показателя q = 4 Часть 1 Уравнение  ( - четное, q = 4 = 2m, где m = 2) не имеет решений в отличных от нуля попарно взаимно простых целых числах ,  и  таких, чтобы  - было четным,  и  - ...

Скачать
20930
0
0

... n = q ³ 3 и четном значении z также не имеет целочисленных решений. Поэтому далее достаточно доказать, что целочисленных решений не имеет также и уравнение (14). Доказательство великой теоремы ферма. Уравнения (1) и (14) полностью эквивалентны, т.е. либо не существует целочисленных решений у обоих уравнений, либо целочисленные решения одновременно имеют уравнения (1) и (14). Покажем, что ...

0 комментариев


Наверх