Токсичность веществ, ПДК вредных газов и паров в воздухе

Безопасность жизнедеятельности и охрана труда
Основные цели и задачи службы охраны труда Надзор и контроль за соблюдением законодательства о труде и правил по охране труда. Государственный инспектор, его права и обязанности Виды инструктажа. Порядок и сроки проведения Светильники. Их хар-ки по светораспределению и по степени защиты от воздействия окружающей среды. Методы расчета ИО Как определяется расчётная освещенность на рабочем месте при ЕО. Применяемые приборы для контроля освещенности Первая помощь человеку, пораженному электрическим током. Меры защиты от поражения электрическим током < α ≤ 1 Описать типовые случаи поражения электрическим током при касании к электрической сети Разница между звземдением и занулением эл. оборудования Влияние вибрации на организм человека. Вибрационная болезнь Влияние шума на организм человека. Нормирования шума Применяемые способы при тушении пожаров. Взрывоопасность Автоматические огнетушащие установки. Причины пожаров на производстве Категория выполняемой работы, которая подразделяется в зависимости от энергозатрат: 2)легкую (Iа — до 148 Вт, Iб — 150-174 Вт); Токсичность веществ, ПДК вредных газов и паров в воздухе Значение состояния воздушной среды. Причины и характер загрязнения воздуха рабочей зоны Источники возникновения ЭМП и их влияние на организм человека. Параметры и нормы Свойства ионизирующих излучений и их влияние на организм человека. Лучевая болезнь Мероприятия по защите от ионизирующих излучений Указать виды опасности при облуживании технологического оборудования. Что такое безопасные условия труда Виды электротравм и ударов. Характер воздействия тока на организм человека (электроофтельмия). Оказание ПМП при поражении электрическим током Сравнительная оценка естественных и антропогенных ионизирующих излучений Расчет естественного освещения по графикам Данилюка. Достоинство данного метода Чрезвычайные ситуации. Первичные и вторичные поражающие факторы Экологический паспорт промпредприятия Факторы, влияющие на состояние среды обитания и процесс жизнедеятельности: урбанизация, НТП, авария и т.п Предмет и объект дисциплины БЖД. Задачи БЖД. Аксиома о потенциальной опасности. Риск. Понятие безопасности
202906
знаков
6
таблиц
11
изображений

50. Токсичность веществ, ПДК вредных газов и паров в воздухе

 

Поражения отравляющими веществами возможны при авариях на химзаводах, складах. На транспорте и на предприятиях, где используются опасные химические вещества, а также при применении химического оружия противником. Основные пути проникновения отравляющих веществ ( ОВ ): через дыхательный аппарат, кожный покров и желудочно-кишечный тракт. Токсичность ОВ - это способность их вызывать поражения при попадании в организм в определенных дозах. Количественная характеристика поражающего действия ОВ / токсическая доза, при вдыхании токсидоза выражается в мг*мин/л воздуха, при проникновении через кожу, желудочно-кишечный тракт мг/кг живой массы.

 ОВ делятся по характеру поражающего действия на: нервно-паралитические, общеядовитые, удушающие, кожно-нарывные, раздражающие и психогенные.

Предельно допустимой концентрацией (ПДК) называется такая концентрация, которая при ежедневной работе в течение 8 ч. на протяжении всего рабочего стажа не могут вызвать у работающих заболеваний или отклонения в состоянии здоровья.

 ПДК устанавливается в мг/м на основе исследований и утверждается Минздравом РФ. В нашей стране установлены ПДК для 1410 веществ, а других странах - меньше: например, в США для 963 веществ. ПДК является и характеристикой опасности веществ, например, ПДК и класс опасности некоторых веществ : аммиак - 20 мг/м и 4 класс, ацетон - 200 и 4, йод - 1 и 2, ртуть - 0,01 и 1, хлор - 0,1 и 1.

51. Наличие «циклонов» (центробежных пылеотделителей) и фильтров в вытяжной системе вентиляции. Дать развёрнутую схему вытяжной вентиляции. Существующие типы фильтров и их устройство

 

Расчет вентиляционной установки сводится к: 1)к выбору схемы её расположения 2) к расчету диаметров воздуховодов участков 3) к определению перемещения воздухов в данном участке 4) определение величины воздухообмена 5) к определению сопротивления перемещаемого воздуха в системе 6) к подбору вентилятора 7) к подбору электродвигателя.

6.  Устройство для удаления воздуха

7.  Вентилятор

8.  Система возуховодов

9.  Пыле- и газоулавливающие устройства

10.Фильтры

11.Устройство для выброса воздуха

 При работе вытяжной системы чистый воздух поступает в помещение через неплотности в ограждающих конструкциях. В ряде случаев это обстоятельство является серьезным недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

Очистка воздуха от пыли может быть грубой, средней и тонкой. При грубой очистке воздуха задерживается крупная пыль (размером частиц >50 мкм). При средней очистке задерживается пыль с размером частиц до 50 мкм, а при тонкой пыль с размером частиц менее 10 мкм.

Для грубой и средней очистки применяют пылеуловители, действие которых основано на использовании для осаждения частиц пыли сил тяжести или инерционных сил, отделяющих частицы примесей от воздуха при изменении скорости движения (пылеосадительные камеры) и направления его движения (циклоны, инерционные, жалюзийные и ротационные пылеуловители). Наибольшее применение для очистки воздуха от пыли с размером частиц более 10 мкм получили циклоны. Циклоны применяют для очистки воздуха от сухой неволокнистой и неслипающейся пыли. Пылеотделение в циклонах основано на принципе центробежной сепарации. Попадая в циклон по касательной через входной патрубок 1, воздушный поток приобретает вращательное движение по спирали и, опустившись в низ конической части корпуса 3, выходит наружу через центральную трубу 2. Под действием центробежных сил частицы отбрасываются к стенке циклона и опускаются в нижнюю часть циклона, а оттуда в пылесборник 4. Так как эффективность очистки увеличивается (до 0,90 и более) при уменьшении диаметра циклона, то обычно вместо одного циклона большого размера ставят параллельно два и более циклонов меньших размеров.

Вихревые пылеуловители (рис.13,в) отличаются от циклонов наличием вспомогательного воздушного потока. Запыленный воздух, поступающий через патрубок 5 закручивается лопаточным завихрителем 4 и перемещается вверх в корпусе 3, подвергаясь воздействию вытекающих из тангенциально расположенных сопел 2 струй вторичного воздуха. Под действием центробежных сил частицы пыли отбрасываются к периферии, а затем поступают в бункер 6 через кольцевое межтрубное пространство, увлекаемые потоком вторичного воздуха.

Очищенный от пыли воздух выходит через патрубок. В вихревых пылеуловителях достигается эффективность очистки 0,98—0,99 для частиц пыли размером около 10 мкм.

К группе инерционных пылеуловителей относят жалюзийные пылеуловители (рис. 13,г) и различные камеры, в которых запыленный поток изменяет направление движения (рис. 13,(5). Жалюзийные пылеуловители представляют собой набор лопастей 3, установленных последовательно в корпусе 2 так, что между ними образуются щели. Воздух поступает через патрубок 1. Пылеотделение основано на изменении направления движения запыленного воздуха, при этом взвешенные частицы пыли под действием сил инерции и эффекта отражения от лопастей двигаются в направлении к патрубку 5, а чистый воздух проходит через щели и поступает к патрубку 4 на выход из аппарата. Обычно жалюзийные пылеуловители используют для грубой и средней очистки воздуха от твердых частиц, разделяя поток в соотношении 9:1 на чистый и загрязненный.

В камерных пылеуловителях (см. рис. 13, 5) запыленный воздух поступает через патрубок 1 в расширительную камеру 3, где отделяется от пыли и выходит через патрубок 2. Пыль оседает в бункер 4. Камерные инерционные пылеуловители применяют для грубой и средней очистки воздуха от примесей. Скорость движения воздуха в камере около 1 м/с, при этом улавливают частицы пыли размером 25—30 мкм с эффективностью очистки до 0,65—0,85.

Ротационные пылеуловители (ротоклоны) очищают воздух от твердых и жидких примесей за счет центробежных сил и силы Кориолиса, возникающих при вращении ротора. Конструктивно они представляют собой центробежный вентилятор (рис. 13,е), который одновременно с перемещением воздуха очищает его от частиц размером более 10 мкм. Запыленный воздух поступает во входной патрубок 6. При вращении колеса 7 пылевоздушная смесь движется по межлопаточным каналам колеса, при этом частицы пыли под действием центробежных сил и сил Кориолиса прижимаются к поверхности диска колеса и к набегающим сторонам лопаток колеса. Пыль с очень небольшим количеством воздуха (3—5%) поступает через зазор между колесом 7 и улиткой 3 в кольцеобразный пылеприемник 5, а очищенный воздух — в улитку 3 и выходной патрубок 2. Обогащенная пылью смесь через патрубок 8 поступает в бункер 9, в котором пыль оседает, а воздух через отверстие в патрубке 1 снова возвращается к колесу 7. В бункере 9 пыль увлажняется.

Ротоклоны находят применение в пыльных производствах, например, в литейном. Они обеспечивают сравнительно высокую эффективность очистки: для частиц пыли размером 8—20 мкм — 0,83, а для более крупных — до 0,97. Для повышения эффективности очистки в газодинамический тракт ротоклонов иногда вводят воду.

Рис. 15. Пылеосадятельная камера: / — входной патрубок; 2 — корпус; 3 — выходной патрубок; 4 — бункер

 

Пылеосадительные камеры (рис. 15) применяют для осаждения крупной и тяжелой пыли с размером частиц более 100 мкм. Скорость запыленного воздуха в поперечном сечении корпуса камеры 2 принимается небольшой около 0,5 м/с для того, чтобы пыль могла осесть в камере раньше, чем она покинет ее. Поэтому габариты камер получаются довольно большими, что ограничивает их применение, несмотря на очевидные преимущества — малое гидравлическое сопротивление и простоту эксплуатации. Эффективность очистки можно увеличить (до 0,80—0,95), если камеру выполнить лабиринтного типа, хотя это влечет за собой повышение гидр авлического сопротивления.

Для очистки приточного вентиляционного воздуха от пыли и туманов применяют электрофильтры. Работа электрофильтров основана на создании сильного электрического поля при помощи выпрямленного тока высокого напряжения (до 35 кВ), подводимого к коронирующим и осадительным электродам. При прохождении запыленного воздуха через зазор между электродами происходит ионизация молекул воздуха с образованием положительных и отрицательных ионов. Ионы, адсорбируясь на частицах пыли, заряжают их положительно или отрицательно. Пыль, получившая заряд отрицательного знака, стремится осесть на положительно заряженном электроде, а положительно заряженная пыль оседает на отрицательно заряженных коронирующих электродах. Эти электроды периодически встряхиваются при помощи специального механизма, после чего пыль собирается в бункере, откуда удаляется.

Для очистки приточного атмосферного и рециркуляционного воздуха от различных пылей, а также вентиляционных выбросов с малой концентрацией загрязнений применяют двухзонные электрофильтры ФЭ и РИОН (рис. 16,а). В электрофильтре загрязненный воздух проходит ионизатор, в состав которого входят положительные / и отрицательные 2 электроды.

Рис. 16. Электрофильтры

Ионизатор выполнен так, чтобы при скорости около 2 м/с частицы пыли успели зарядиться, но не смогли осесть на электроды. Зарядившиеся частицы пыли воздушными потоками увлекаются в осадитель, представляющий собой систему пластин осадительных электродов 3 и 4, где частицы оседают на пластинах противоположной полярности. Выбором расстояния между пластинами (6—7 мм) удается при сравнительно небольшом напряжении между пластинами (7 кВ) получить напряженность электрического поля 80—100 В/м, что достаточно для осаждения частиц субмикронных размеров. Далее воздух проходит противоуносный фильтр и выходит из аппарата. Эффективность пылеулавливания достигает 0,95, гидравлическое сопротивление чистого фильтра 30—50 Па, производительность но воздуху 1000 м3/ч и более, входная концентрация загрязнений не более 10 мг/м3.

Для очистки вентиляционных выбросов от туманов минеральных масел, пластификаторов и т. п. в ЦНИИ-промзданий разработаны электрические туманоуловители УПП (рис. 16,б). В корпусе 1 установлен электрический туманоуловитель 2 типа ФЭ, который питается от источника 4 напряжением 13 кВ. Подвод питания к электродам производят через высоковольтные электроизоляторы с клеммами 3. Загрязненный воздух через входной патрубок, распределительную решетку 8 и сетку 7 поступает к туманоуловителю, очищается от загрязнений и, пройдя брызгоуловитель 5, подается на выход из УПП. Жидкость, отделенная от воздуха, собирается в воронках 6, а затем сливается из УПП через гидрозатворы. Пропускная способность УПП по воздуху 5—30 тыс. м3/ч. УПП сочетают высокую эффективность улавливания загрязнений с низким гидравлическим сопротивлением и предназначены для использования в системах с температурой газов до 350 К.

Для средней и тонкой очистки воздуха от примесей в системах приточной и вытяжной вентиляции широко используют фильтры, в которых запыленный воздух пропускается через пористые фильтрующие материалы, способные задерживать пыль. Если размер частиц пыли больше размера пор фильтрующего материала, то действует поверхностный (сеточный) эффект пылеулавливания с образованием осадка на входе в фильтрующий элемент. Если размер частиц пыли меньше размера пор, то пыль проникает в фильтрующий материал и оседает на частицах или волокнах, образующих этот материал. Такой процесс фильтрования называется глубинным. На практике обычно осуществляются одновременно оба процесса фильтрования, так как размеры частиц пыли и пор всегда обладают определенным диапазоном распределения около их средних значений.

Осаждение твердых и жидких частиц на фильтрующий элемент происходит в результате контакта частиц с поверхностью пор. Механизм осаждения частиц обусловлен действием сил инерции, гравитационных сил, броуновской диффузией в газах и эффектом касания. Для частиц размером менее 0,1 мкм определяющим является процесс диффузии, а для частиц размером более 1 мкм — силы инерции.

В качестве фильтрующих материалов применяют ткани, войлоки, бумагу, сетки, набивки волокон, металлическую стружку, фарфоровые или металлические полые кольца, пористую керамику или пористые металлы.

Для очистки воздуха при запыленности менее 10 мг/м3 в системах вентиляции используют ячейковые фильтры (рис. 17,а,б), представляющие собой рамку или каркас с фильтрующими элементами, выполненными из набора металлических сеток (фильтры Рекка — ФяР), винипластовых сеток (ФяВ), пенополиуретана (ФяП), упругого стекловолокна (ФяУ), войлока и др. Выбор типа фильтрующего материала зависит от тонкости очистки, условий работы фильтра, химического состава примесей. Общим недостатком ячейковых фильтров является ограниченный срок их службы из-за быстрого засорения фильтрующего материала, что требует частой смены или регенерации (очистки) фильтрующих элементов. Этот недостаток частично устраняется при использовании рулонных фильтров (рис. 17,е), которые обычно не регенерируют.

Рис. 17. Фильтры:


а—каркасный; б — каркасный с предварительным фильтром; в —рулонный;

/ — каркас; 2 — фильтрующий элемент; 3 — волокновый фильтр; 4 — фильтр из материала ФП; 5 —ролик; 6 — барабан

Ячейковыми и рулонными фильтрами достигают эффективность очистки вентиляционного воздуха до 0,8 при гидравлическом сопротивлении фильтра 40—200 Па. Пылеемкость фильтров составляет 1500 г/м2 у фильтра ФяР; 200 — у ФяП; 300 — у рулонного фильтра из упругого стекловолокна.

Для повышения эффективности очистки фильтрующие сетки покрывают слоем масла. Такие фильтры применяют для очистки воздуха, подаваемого в помещение при концентрациях пыли до 200 мг/м3. Ряд конструкций представляет собой кассету, обтянутую сеткой и заполненную кольцами или гофрированными сетками. Эта кассета перед установкой в сеть погружается в веретенное или вазелиновое масло. Частицы пыли, проходя с воздухом через лабиринт отверстий, образуемых кольцами или сетками, задерживаются на их смоченной поверхности. Эффективность очистки достигает 0,95 и более.

В настоящее время широкое распространение получили самоочищающие масляные фильтры, в которых фильтрация осуществляется двумя непрерывно движущимися полотнами из металлической сетки. При загрязнении масляных фильтров сетки промывают в содовом растворе.

Для улавливания высокодисперсных аэрозолей с эффективностью очистки до 0,99 с частицами 0,05—0,5 мкм в вентиляционных системах широко используют фильтрующие материалы типа ФП. Скорость фильтрации составляет 0,01—0,15 м/с, гидравлическое сопротивление в процессе эксплуатации изменяется от 200 до 1500 Па. Во всех системах тонкой очистки с фильтрами из материала ФП целесообразно применять волокновые пред-фильтры (рис. 17,6), которые должны улавливать частицы крупнее 1 мкм.

Для очистки воздуха от туманов кислот, масел и других жидкостей используются волокновые и сеточные туманоуловители, принцип действия которых основан на осаждении капель смачивающей жидкости на поверхности пор с последующим стеканием жидкости под действием сил тяжести. Туманоуловители делят на низкоскоростные (скорость фильтрации №ф^0,15 м/с), в которых преобладающим является механизм диффузионного осаждения капель, и высокоскоростные (№ф = =0,5-f-5 м/с и более), в которых осаждение капель на поверхности пор происходит главным образом под воздействием инерционных сил.

Низкоскоростные туманоуловители обеспечивают очень высокую эффективность очистки (до 0,999) от частиц размером менее 3 мкм, полностью улавливая частицы большего размера. Волокновые слои формируются набивкой стекловолокна диаметром 7—30 мкм или полимерных волокон (лавсан, ПВХ, полипропилен) диаметром 12—40 мкм. Толщина слоя составляет 50— 150 мм. Гидравлическое сопротивление сухих фильтрующих элементов равно 200—1000 Па, а в режиме очистки без образования твердого осадка 1200—2500 Па.

Высокоскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки газа от тумана с частицами менее 3 мкм, равную 0,90—0,98 при гидравлическом сопротивлении 1500—2000 Па.

Институтом НИИОгаз разработан для очистки воздуха, отходящехго от металлорежущих и холодновыса-дочных станков, низкоскоростной туманоуловитель типа Н-2000. Туманоуловитель (рис. 18,а) состоит из корпуса, в котором размещены две ступени очистки. Фильтр грубой очистки представляет собой легкосъемную кассету, в которой находится войлок или пакет вязаных гофрированных сеток.

Рис. 18.

 Туманоуловители:

а — низкоскоростной Н-2000; / — корпус; 2 — патрон} 3 — фильтр грубой очистки; б — АЭ2-12; 1 — сливной кран; 2 — патрон; 3 — входной патрубок; 4 — фильтр-шумоглушитель; 5 — выходной патрубок; 6 — вентилятор; 7 — корпус

Он очищает поток от крупных жидких и твердых частиц. Фильтр тонкой очистки включает ряд вертикальных патронов, заполненных иглопробивным войлоком из лавсановых во-16 локон диаметром 18 мкм. Скорость фильтрации через вторую ступень составляет 0,1—0,15 м/с. При нагрузке по газу 1700 м3/ч и входной концентрации тумана до 42 мг/м3 агрегат имеет гидравлическое сопротивление около 450 Па и обеспечивает эффективность очистки, равную 0,85.

Серийно изготовляют агрегаты АЭ2-12 для улавливания масляного тумана, отходящего от металлорежущих станков (рис. 18,6). На первой ступени используется инерционный эффект очистки от крупных частия, вторая ступень низкоскоростная и выполнена в виде патронов, снаряженных многослойной тонкой сеткой, а третья ступень (фильтр-шумоглушитель) состоит из нескольких слоев дырчатой пенополиуретановой губки, которые размещены после вентилятора и служат одновременно глушителем шума. Производительность агрегата 750 м3/ч.

Концентрация масла на выходе из агрегатов Н-2000 и АЭ2-12 невелика, поэтому очищенный воздух из агрегатов обычно поступает в помещение цеха, обеспечивая рециркуляцию воздуха.

Важным вопросом при проектировании пыле- и туманоуловителей является возможность их использования в системах рециркуляции воздуха. В соответствии с нормами при использовании рециркуляции должны соблюдаться следующие условия: количество воздуха, поступающего извне, должно составлять не менее 10% общего количества, поступающего в помещение; воздух, возвращаемый в помещение, должен содержать не более 30% вредных веществ по отношению к их ПДК.

Рис. 19. Схемы абсорберов с насадкой (а) и барботаясно-пенных (б):

1 — корпус; 2 — брызгоуловитель; 3 — труба с форсунками; 4 — насадка; 5-г труба для отвода жидкости; 6 — решетка; 7 — гидрозатвор

Исходя из ПДК и обычных концентраций примесей эффективность очистки пыле- и туманоуловителей должна быть 0,90—0,95 и более. Очистка вытяжного вентиляционного воздуха от газо- и пылеобразных примесей основана на использовании ряда физико-химических методов. К ним относятся абсорбция, хемосорбция, адсорбция, каталитическое дожигание и др.

При абсорбции происходит поглощение жидкостями паро- и газообразных примесей очищаемого воздуха. Абсорберы применяют для очистки вентиляционного воздуха, отводимого от травильных и гальванических ванн, а также при очистке технологических выбросов. Хемосорбция заключается в промывке очищаемого воздуха растворами, вступающими в химические реакции с газообразными примесями в воздухе, такими, как двуокись серы, хлор, сероводород и т. п. Конструктивно абсорберы изготовляют в виде аппаратов с пористой или тарельчатой насадками (рис. 19,а), барботажно-пенных аппаратов (рис. 19,6) и др.Адсорбция представляет собой процесс поглощения газов или паров поверхностью твердых веществ — адсорбентов (активированный уголь, силикагель, глинозем). Адсорбенты применяют при малом содержании в воздухе паров растворителей, двуокиси серы и т. п.

Каталитическое дожигание применяют для превращения токсичных смесей газов в нетоксичные или малотоксичные. Так, при эксплуатации двигателей внутреннего сгорания в производственных помещениях отработавшие Тазы дожигают в специальных устройствах (рис. 20,а), где в присутствии катализатора (платины, никеля, меди и др.) протекают реакции снижающие токсичность выхлопа двигателей внутреннего сгорания

Рис. 20. Схемы каталитического (а) и высокотемпературного (б) дожигателя:/ — корпус; 2 — каталитическая решетка; 3— горелка; 4 — трубопровод для подвода газа на дожигание

 

Высокотемпературные дожигатели (рис. 20,6) применяют для нейтрализации смесей газов и паров, содержащих в избытке окислитель или горючее. Для дожигания смесей с избытком горючего в зону горения вводят воздух или кислород, а для дожигания смесей с избытком окислителя — природный газ.



Информация о работе «Безопасность жизнедеятельности и охрана труда»
Раздел: Безопасность жизнедеятельности
Количество знаков с пробелами: 202906
Количество таблиц: 6
Количество изображений: 11

Похожие работы

Скачать
25524
1
2

... труда – система законодательных актов и соответствующих им социально-экономических, технических, гигиенических и организационных мероприятий, обеспечивающих безопасность, сохранения здоровья и работоспособности человека в процессе труда. В дисциплине «Охрана труда» объединяются вопросы: - правовые (законодательство по охране труда); - санитарно-гигиенические (гигиена труда и производственная ...

Скачать
30385
1
0

... проверки знаний требований охраны труда при обучении, обязан после этого пройти повторную проверку знаний в срок не позднее одного месяца. 2. Система пропаганды охраны труда Цель пропаганды - убедить работающих в необходимости мер безопасности, помочь им в выработке сознательного отношения к правилам и нормам, заинтересовать в выполнении мероприятий, т.е. пропаганде охраны труда, в основном ...

Скачать
20948
1
0

... ; - организует пропаганду безопасных методов труда, сотрудничество в области охраны труда. Работодатель несет непосредственную ответственность за допущенные нарушения охраны труда. Служба охраны труда на производстве. На предприятии, где количество работников 50 человек и больше, работодатель создает службу охраны труда в соответствии с типовым положением. На предприятии, где количество ...

Скачать
22182
0
0

... с терроризмом» Концепция национальной безопасности в РФ – имеет важное значение и представляет собой систему взглядов на обеспечение в РФ безопасности личности, общества и государства от внешних и внутренних угроз во всех сферах жизнедеятельности. В Концепции сформулированы важнейшие направления государственной политики РФ, взаимоотношения с мировым сообществом, национальные интересы России ( ...

0 комментариев


Наверх