3. Возврат к визуальному мышлению

Новые синергетические знания и новые подходы к образованию требуют иных, отвечающих уровню сегодняшнего дня способов передачи и распространения этих знаний. Прежде всего представляется целесообразным всесторонне разрабатывать средства визуализации синергетических знаний на компьютерах. А для этого необходимо перевести основные понятия и представления синергетики на язык образов мировой культуры, соотнести их с философскими воззрениями, с символикой мифологии и религии. Известно, что у человеческих существ именно зрительный канал является наиболее мощным в восприятии и переработке поступающей информации. Более половины нейронов коры головного мозга человека связаны с обработкой визуальной информации. Поэтому наиболее эффективны такие способы передачи знаний, как "текст 4- образ", формула + визуализация описываемого ею хода процесса".

В этой связи стоит напомнить, что первобытное, архаическое мышление было по преимуществу образным, если можно так выразиться "правополушарным". Это было мышление в представлениях и символических образах. Дальнейший многотысячелетний ход эволюции культуры и науки, в особенности западной, привел к всестороннему развитию логических, аналитических, вербальных средств обработки информации и презентации знаний, основанных на логико-понятийном, "левополушарном" мышлении. При этом наглядность и образность архаического мышления была во многом утрачена. Существовала даже склонность специально изгонять наглядность, якобы, мешавшую пониманию абстрактно-теоретических результатов фундаментальных научных исследований. Такого рода тенденция наблюдалась, например, при переходе от геометрических к алгебраическим доказательствам, а также во время разработки квантово-механической теории.

В результате нынешнего бурного развития математического моделирования, вычислительного (на компьютерах) эксперимента, компьютерной графики открываются возможности для нового синтеза, синтеза видео, аудио, текстуальных и формализовано-математических средств передачи научной информации, а стало быть, для одновременного использования преимуществ и "левополушарного" (логико-понятийного), и "правополушарного" (наглядно-образного) мышления. Прорыв к новому осуществляется путем возврата к старому. Образное мышление древних возрождается на новой основе. Способности продуктивного воображения и творческой интуиции получают новые импульсы для развития благодаря погружению человека в виртуальные реальности, моделируемые компьютером. Не случайно в наши дни наряду с гипертекстами электронных пособий необычайно широким спросом начинают пользоваться визуальные энциклопедии с фото и картинками даже для взрослых.

Через синергетику оказывается возможным соединение двух взаимодополнительных способов постижения мира -постижение через образ и через число. Синергетика позволяет сблизить Восток и Запад, восточное, нагляднообразное, интуитивное восприятие мира и западное, логико-вербальное.

 4. Синергетика как способ интеграции естественнонаучного и гуманитарного образования

На основе синергетики возможно также сближение гуманитарного и естественнонаучного образования. Гуманитарное образование все более математизируется. Использование компьютерных программ, визуализирующих синергетические знания, -это реальный путь для гуманитариев усвоить глубоко содержательные понятия и идеи, получаемые на самом передовом крае математической и физической наук, вовлечения в оборот своего мышления важных мировоззренческих следствий и выводов из сложных аналитико-математических расчетов и математического моделирования процессов образования и эволюции сложных структур в нелинейных средах.

Для специализирующихся в области естествознания - это способ повышения их общей культуры мышления, расширения их культурологического образования.

5. Обучающие компьютерные программы по синергетике

Разработка обучающих компьютерных программ по синергетике началась в 1992 году в рамках математического факультета Российского открытого университета. Эта весьма объемная работа пока не завершена. В основе ее лежат результаты многолетних исследований научной школы в Институте прикладной математики им. М.В.Келдыша и Институте математического моделирования РАН. Математические модели (дифференциальные уравнения типа теплопроводности, квазилинейные, с источником), визуализированные на экране компьютеров посредством графиков, несут в себе глубоко содержательные идеи, которые становятся доступными даже для не владеющих математическим аппаратом. Даже на обычном персональном компьютере можно воспроизводить реальные процессы эволюции, протекающие в открытых нелинейных средах. И это открывает возможности для массового обучения синергетике, синергетическому видению мира.

Посредством использования компьютеров решается одна из важнейших задач образования - налаживание прочной обратной связи между обучающим и обучаемым, развитие диалога между репрезентантом новых знаний и воспринимающим их субъектом, а также расширение возможностей выбора изучаемого материала, свободное движение в учебном проблемном поле поиска. Открывается возможность решения задачи -передать не "знание что", а "знание как" "know how", т.е. включить у обучающегося внутренние механизмы переработки и продуцирования новых знаний согласно усвоенным общим методам, моделям и схемам, зажечь внутренний огонь творчества в его душе.

Обучающая компьютерная программа в идеале должна строиться как некая увлекательная игра, как драма идей, театр идей. За графическими образами, картинками, представляющими ход процессов в открытых нелинейных средах, скрываются сложные математические выкладки, многолетние исследовательские работы специалистов в этой области. А сами картинки оказываются доступными многим, даже незнакомым с математикой.

Перед обучающимися, пользователем компьютерного продукта ставятся некоторые вопросы, на которые он самостоятельно пытается найти ответ. Далее осуществляется проверка и дается объяснение, почему именно этот ответ является правильным.

Персональный компьютер становится установкой, на которой можно воспроизводить реальные процессы, протекающие в открытых нелинейных средах. Пользователь получает возможность экспериментировать, "играть" ходом процессов и достигать понимания, почему процессы протекают так, а не иначе.

Чтобы в компьютерный продукт, обучающую дискету была заложена такого рода игра, чтобы ввести игровые и диалоговые элементы в процесс взаимодействия человека и компьютера, нужно смоделировать на компьютере простейшие проявления человеческой личности. Ведь образ психики творящего человека - это фактически образ постоянной игры ума, блуждания по мицелию возможных мыслительных ходов. Это -диалог между скептиком и догматиком, фантазером и реалистом, между выходящим далеко за пределы жестко установленного и осторожным, узкопрофессионально ориентированным специалистом. Эти ролевые типажи живут в более или менее выраженной форме в каждом из нас. А значит, обучающая дискета неизбежно несет на себе печать личности ее творца. Создатель обучающей дискеты доводит до потребителя свою собственную энергетику, аромат своей собственной души.

Компьютерная графика, будучи одним из современных способов синтеза науки и искусства, имеет немаловажное дидактическое значение. Видеофильмы и обучающие компьютерные дискеты делают новейшие результаты научных исследований наглядными, легко воспринимаемыми и понимаемыми. Кроме того, они позволяют передавать информацию в максимально сжатой форме.

Возможна разработка самых различных типов обучающих дискет по синергетике, разного информативного содержания и разного дидактического уровня сложности. Возможны дискеты чисто справочного характера (руководства по новым методам аналитических расчетов и математического моделирования), а также дискеты, инициирующие научный поиск, показывающие границы проведенных на сей день исследований и круг задач, которые еще предстоит решить. А каждый исследователь на своем собственном опыте знает, что правильная постановка проблемы, понимание направления поиска, видение перспективных шагов исследований, часто даже важнее самой реализации этих шагов, решения проблемы.

Разработка и массовое распространение нетрадиционных, образовательных средств, компьютерных программ, видеофильмов и обучающих дискет для визуализации новых представлений о самоорганизации и коэволюции в природных и социальных системах призвано привести к тому, что знание станет товаром, причем одним из наиболее ценных, социально-значимых. Ибо синергетические знания, как мы пытались здесь показать, -это не просто информация, но новый способ мышления и видения мира, способ продуцирования новых знаний, т.е. знание метода. Все это может принципиально изменить социальный статус ученого. Ученый будет способен производить продукты, которые разойдутся миллионными тиражами, быстро раскупятся, получат массового потребителя. Создание "золотой" дискеты по синергетике есть ключ ко многим областям современного образования.


СИНЕРГЕТИКА И ОБРАЗОВАТЕЛЬНЫЕ ЦЕННОСТИ

К.Х.Делокаров, Ф.Д.Демидов

Философия, "вписывая" открытия науки в "тело культуры", расширяет проблемное и предметное поле человека. Это относится и к взаимоотношению философии и новой концепции самоорганизации, которую разные авторы называют одни - синергетикой, другие - концепцией диссипативных структур, третьи - теорией катастроф.

Философия, уважая себя и неся ответственность за будущее, не может позволить ни снобистское философствование без учета достижений науки, ни сведение своей функции к роли комментирования основных достижений научного знания.

При этом роль философии по отношению к фундаментальным достижениям науки зависит от того, на каком этапе развития науки находится осмысливаемая ею новая научная теория, ибо, как однажды заметил А.Шопенгауэр научная истина в своем развитии проходит через фазы. В первой фазе она просто отвергается как абсурд. Во второй фазе она принимается как возможная гипотеза, которая была высказана уже давно. На третьей стадии эту научную истину воспринимают уже как очевидную. Синергетика уже прошла первый этап. Прошли времена, когда, например, работа Б.П.Белоусова, ставшая классической и вошла в науку как реакция Белоусова-Жаботинского, относящаяся к началу 50-х годов, долгое время не публиковалась, поскольку подобное "теоретически было невозможно". Видимо, сегодня мы находимся в процессе перехода из второй фазы в третью.

Для того чтобы определить насколько основательны методологические и мировоззренческие претензии новой области знания, рассмотрим эволюцию научной картины мира с момента возникновения первой фундаментальной научной теории - классической механики. Научная картина мира - результат взаимодействия философии и фундаментальных естественнонаучных достижений в новоевропейской и мировой культуре с момента возникновения механики, ставшей ядром первой научной картины мира. Итак, после выхода в свет эпохальной работы И.Ньютона

"Математические начала натуральной философии"

В 1687 году начинается новый этап во взаимоотношении философии и науки. Именно с этого времени начинается движение знания - мысли не только от философии к конкретно научным представлениям, но и, наоборот, классическая механика становится источником новых философских размышлений. Начиная с осмысления классической механики и экстраполяции ее идей в другие сферы, формируется новый методологический инструмент, - научная картина мира, - служивший мостом, соединяющим общее и частное, научные и философские представления. Таким образом, появляется первая механическая (классическая) картина мира, ядром которого выступали базовые идеи классической, ньютоновской механики, с механической причинностью, абсолютным пространством и временем и абсолютным движением. Категориальной сеткой, объединяющей различные механические представления о мире, были понятия пространство, время, сила и движение. Механическая картина мира служила культуре верой и правдой почти двести лет.

Классическая картина мира была онтологизирована. В ней, по мнению тех ученых и философов, которые ее создавали, не было ничего субъективного. Она отражала объективную реальность такой какой она есть. В ней действует строго однозначная связь между причиной и следствием. Поэтому в ней прошлое однозначно определяет настоящее, а настоящее - будущее. Эта связь часто называют лапласовским детерминизмом.

Прежде чем перейти к следующей неклассической (релятивистской, а затем и к квантовомеханической) картине мира, сделаем несколько замечаний относительно сути научной картины мира.

Научная картина мира - синтетическое образование, соединяющее на базе наиболее фундаментальной научной теории, многообразные гипотезы и идеи в самых различных областях знания. В отличие от научной теории научная картина мира говорит не о какой-то конкретной области знания, но о мире в целом. Естественно в процессе такого, "синтезирования" разнородных учений и экстраполяции идей наиболее развитой научной теории на другие области нехватающие знания заполняются соответствующими гипотезами. Поэтому научная картина мира - это картина своеобразно соединяющая объективное и субъективное. Она стремится стать системой знаний о мире и создает целостную картину на базе наиболее развитой теории.

Неклассическая научная картина существенно изменила прежние представления о мире, поскольку приняла за основание результаты релятивистской и квантовой механики. Тем самым изменилась онтология мира. Пришел в движение весь категориальный аппарат науки. Изменился стиль мышления, цель научного знания. Из словаря науки были элиминированы прежние абсолюты - абсолютное пространство движения, абсолютная масса, абсолютный лапласовский детерминизм.

Тем самым была пересмотрена онтология мира, поскольку изменилось представление о реальности, причинности, закономерности, цели познания. Она стала включать в себя не только актуально данное, но и потенциально возможное. Субъект стал возвращаться в теорию. Вероятность стала законной частью науки, а не результатом незнания. Статистические законы стали формой описания микропроцессов. Тем самым радикально были пересмотрены основания классической картинны мира и на новой онтологии создана неклассическая картина мира, которая сложилась примерно в первой трети XX века и господствовала до недавнего времени.

Начиная с 70-х гг. формируется постнеклассическая картина мира, ядром которого выступают ряд нетрадиционных представлений, получивших название "синергетика" у немецкого ученого Германа Хакена из Штутгарта, теория диссипативных структур у Ильи Пригожина (Брюссельская школа), теория катастроф у французского математика Тома Рене.

При этом указанные направления не исключают, а взаимодополняют друг друга, делая акцент на те или иные идеи. Так, И.Пригожий анализирует процессы образования упорядоченных структур из хаоса (его широко известная популярная работа так и называется "Порядок из хаоса"), с точки зрения энтропийных процессов - диссипации, тогда как Г.Хакен и его школа делают акцент на негэнтропию - порядок.

Принципиально важно подчеркнуть, что синергетику или новую концепцию самоорганизации, нельзя отнести ни к естественным, ни к общественным, ни к гуманитарным наукам в их традиционном смысле. Это междисциплинарное направление исследования образования упорядоченных структур из хаоса. По мнению Ю.Л.Климонтовича, синергетика - это не новая наука, но новое объединяющее направление в науке. Цель синергетики - выявление общих идей, общих методов и общих закономерностей в самых разных областях естествознания и социологии.

Таким образом, новое научное направление, которое стремится статья ядром постнеклассической научной картины мира, продолжает сложившуюся в культуре традицию, предлагая в очередной раз пересмотреть онтологию мира и построить на новой основе постнеклассическую картину мира. Синергетика, утверждая всеобщность нелинейности, заставляет задуматься, критически пересмотреть сложившуюся линейную модель знания, линейную модель прогресса, в том числе и социального прогресса. Если законы синергетики носят глобальный характер, то не следует ли пересмотреть роль принципа соответствия в структуре познания и вообще кумулятивистскую модель познавательного процесса?! Некоторые авторы, например, авторы учебного пособия для студентов и аспирантов "Концепции самоорганизации: становление нового образа научного мышления", изданного в 1994 г. считают, что широко распространенная модель развития познания: классическая, неклассическая и постнеклассическая этапы развития науки, защищаемая В.С.Степиным и рядом других известных исследователей, ошибочна, поскольку сама того не замечая, следует старой досинергетической линейной парадигме. По мнению этих авторов в науке нет такого порядка, который исследователи post factum устанавливают, в ней больше беспорядка, чем это представляется сторонникам линейного мышления. В этой связи интересно, что спорят не только о сути новой концепции самоорганизации, но и о ее названии. И это не случайно. Так было всегда. Достаточно вспомнить споры о сути и названии теории относительности, также дискуссии по философским проблемам волновой или квантовой механики. Споры о названии новых фундаментальных теорий связаны с тем, что зачастую за тем или иным названием кроется соответствующее содержание. Все это свидетельствует о том, что предмет новой науки находится в движении и философия может принять участие и действительно принимает участие в определении ее сути, возможностей и границ, размышляя над смыслом новых идей.

Синергетика, независимо от ее будущего, уже привела к расширению наших знаний о мире и даже наших незнаний. Ведь имеет смысл различать не только разные типы знания, но и разные типы незнания. Одно дело, когда мы не знаем, что чего-то не знаем, и совсем другое, когда мы знаем, что чего-то не знаем. Первое не волнует нас, человек и общество воспринимают подобное незнание как должное, тогда как второй тип незнания мобилизует исследователей на поиски причин того, что мы не знаем. Поэтому процесс движения мысли к истине не столь прост, как мы недавно полагали, думая, что исследование - суть движения от незнания через гипотезу к знанию. В действительности движение к истине предполагает осознание незнания чего-то, после которого незнание становится объектом изучения.

В чем философско-методологическое значение синергетического подхода? На что претендует новое научное направление?

Во-первых, синергетика направляет свое внимание, по словам И.Пригожина, не на существующее, а на возникающее. Ей интересны моменты возникновения из хаоса порядка, для этого она исследует несколько типов хаоса (равновесный хаос, динамический хаос (неравномерный, турбулентный) и статистический хаос и специально вводит термин "бифуркация" как точку ветвления, когда открываются несколько возможных путей развития и нет ничего предопределенного. Тем самым усиливается отход от классической модели бытия, поскольку неклассическая картина тоже суживает границы классического детерминизма, но оставляет возможность действия статистических законов. Постнеклассическая наука, опираясь на результаты синергетики, теории диссипативных структур суживает еще больше действие статистических законов, поскольку по ее мнению, в нестабильном, неравновесном состоянии "малые воздействия могут привести к большим следствиям". Это принципиальное значительной методологической значимости положение, ибо мир теряет некий выделенный центр. Оказывается, что в мире нет тех универсальных законов, которые делали возможным его познание в неклассическом смысле. Ведь именно универсальность причинно-следственных связей служила ведущим представителям эпохи Просвещения онтологическим основанием возможности победы разума, всеобщности рациональности. Теперь подобные суждения ставятся под вопрос. Итак, идея о том, что мир не имеет центра и в мире нет единых универсальных причинных цепей, связывающих все сущее - претендует на радикальную переоценку ценностей не только в науке, но и в области философии.

Во-вторых, синергетика смотрит на мир из "другой системы координат", чем предшествующая наука, поскольку она принимает за исходное нестабильность, неравновесность, нелинейность, тогда как линейность, стабильность, равновесность оказываются моментами этой нестабильности и неравномерности. Тем самым категориальная сетка, с позиций которой видится мир в новой постнеклассической парадигме. принципиально иная, поскольку ее базовыми исходными понятиями выступают такие категории, как нелинейность, самоорганизация, открытость, сложность, бифуркация, когерентность, аттрактор, хаос, случайность и другие. Уже одно перечисление базовых, системообразующих понятий данной научной области свидетельствует о ее принципиальном отличии не только от классической картины мира, но и неклассической. Вот почему новая междисциплинарная сфера науки стала сразу оказывать влияние на философию, в частности, на философию постмодернизма.

При этом важно определить концептуальное содержание хотя бы нескольких наиболее важных с методологической точки зрения категорий, чтобы представить себе контуры нового научного направления. Например, традиционно хаос считался чем-то лежащим за пределами науки, играл лишь роль первоначала в греческой философии. В новой постнеклассической синергетической картине хаос означает неструктурированность бытия, и потому хаос не подчиняется детерминистическим законам. Согласно синергетике, мир имеет всегда определенные структуры, упорядоченные тем или иным образом. Нет абсолютной бесструктурности и абсолютного беспорядка. Есть структура и упорядоченные формы, не укладывающиеся в известной науке модели описания. Структуры зарождаются, эволюционируют, претерпевая самые разные катаклизмы и трансформации и они могут быть вписаны с помощью "законов" хаоса, если хаос разделить на различные типы: равновесный, неравновесный (динамический) и статистический. Тем самым хаос становится предметом изучения науки и осмысливается философией.

Далее, принципиальным для всей новой системы размышлений выступает категория самоорганизации, под которой понимается способность тех или иных систем к саморазвитию, самозарождению, используя при этом не только и не столько приток энергии, информации, вещества извне, сколько пользуясь возможностями, заложенными внутри системы.

Принципиально важно для синергетики то обстоятельство, что она имеет дело не только с нелинейными, нестабильными системами, но и с тем, что она рассматривает сложные, эволюционирующие и открытые системы. Таковы общество, различные его подсистемы, система "человек-природа", рост народонаселения и т.д. и т.п. При этом открытыми называются системы, которые обмениваются с внешним миром веществом, энергией и информацией.

Не менее интересны и методологически значимы и другие базовые категории синергетики, но и приведенные положения достаточно ясно показывают, что новая синергетическая концепция вводит новую онтологию, новую категориальную сетку для изучения процессов находящихся в состоянии нестабильности, неравновесности и вдали от равновесия. Все эти утверждения имеют принципиальное значение для философии и методологии науки. Концептуально важно, что в новой системе хаос, случайность, дезорганизация и т.д. не разрушительны, а в ряде случаев могут быть созидательными, конструктивными. Вот почему актуализируется задача: научить жить человека в состоянии неопределенности, нестабильности, хаоса, показав ему, что и хаос, и неопределенность и нестабильность можно использовать конструктивно для решения тех или иных задач. Ведь многие явления социальной жизни, например, формирование общественного мнения, сложные экономические процессы в период кризисов, распространение научной информации и т.д. носят нелинейный характер и подчиняются законам самоорганизации. Все это доказывает обоснованность интереса философских систем к новым достижениям научной мысли и ставит сложные задачи перед образованием.

Синергетика, хочет она этого или нет, но если иметь в виду ее смысловую интенцию, то она стремится пересмотреть онтологию бытия, делает значительный, еще больший шаг в возвращении субъекта в мир теории, нежели квантовая механика, поскольку субъект участвует в формировании объекта исследования. Объекты согласно синергетике должны стать человекоразмерными. И в этом чрезвычайно важном для философии положении синергетика продолжает и углубляет начатую неклассической наукой традицию, особенно квантовой механикой со своим принципом, дополнительности, традицию возвращения субъекта в мир теории. Тем самым усложняется вопрос о критериях реальности затрудняется решение проблемы демаркации между реальным и вымышленным. Не случайно встает проблема полионтологичности бытия.

Между тем на этом пути встают сложные философско-методологические вопросы. Ведь ценность науки и в определенном отношении философии, проистекают из того, что они формулируют некие общеобязательные, интерсубъективные, асоциальные положения. Таким образом, встает вопрос о социокультурной ценности самого направления развития мысли, которая стремится уйти от общеобязательности, интерсубъективности и асоциальное.

В этой связи первая проблема, актуализируемая синергетической концепцией, - отношение к прошлому, тем достижениям научного знания, которые исходили из всеобщности линейности, порядка и стабильности. Вторая не менее сложная проблема, имеющая философско-мировоззренческий характер, - культурные последствия деонтологизации знания, усиления участия субъекта в формировании познаваемого объекта. Ситуация осложняется тем, что подобное расширение роли субъекта может быть интерпретировано как отрицание реальности объекта. Не случайно некоторые видные постмодернисты, например, Ж.-Ф.Лиотар, Ж.Делез и др. широко используют идеи синергетики. Последнее естественно, поскольку между децентрацией субъекта и деконструкцией текста в постмодернизме и деонтологизацией объекта познания в синергетике имеется не внешняя, а более органичная, содержательная связь.

В новых условиях необходимо научить человека жить в условиях неопределенности, сложности, открытости, в мире, где нет единого центра, который не только линейно не стремится ни к какому прогрессу, но возможно и никуда не стремится. Важно понять, что определенность ищем мы, это мы хотим, чтобы мир был похож на наш дом, двери которого закрыты, это нам хочется, чтобы у мира был единый центр и чтобы он линейно развивался по пути прогресса. Но все наши субъективные предпочтения ставятся под вопрос новой стратегической концепцией и потому нам нужно готовить учеников к этому новому видению бытия. Подобная радикальная переоценка ценностей, затрагивающая не только ценностно-мировоззренческие установки людей, но и сложившиеся психологические стереотипы, не может пройти безболезненно. Но, видимо, подобная переоценка ценностей неизбежна.


 СИНЕРГЕТИКА И ГЛОБАЛЬНЫЕ ПРОБЛЕМЫ

СОВРЕМЕННОСТИ

Суриков Я.Я.

Обсуждается дискуссионность ситуации с термином "синергетика". Обосновывается своевременность появления данного направления исследований. Синергетика трактуется как начало многовекового процесса синтеза различных наук. Применение синергетических подходов к изучению сложнейшего объекта - биосферы - в сочетании с современной термодинамикой позволяет глубже понять суть современного глобального кризиса. Делается вывод, что выход из кризиса без учета законов термодинамики существенно затрудняется.

Термин "синергетика" привлекает внимание, как своих сторонников, так и противников. Раздаются голоса о возможности развития науки без использования данного термина. Способствует ситуации несколько обстоятельств, из которых можно выделить два. Действительно, много конкретных задач решается, и будет решаться без понятий синергетики. Существеннее второе - отсутствие точного общепринятого определения самого термина "синергетика". Но никакого трагизма здесь нет, если учесть, что сравнительно молодое слово, обладая ярко выраженной междисциплинарностью, привлекает внимание специалистов из столь различных наук, в которых и само слово "термин" понимается по-разному и дается с различной степенью точности и размытости. Последовательное и терпеливое обсуждение вопроса, безусловно, приведет к уточнению понятия. Плодотворность синергетики видна каждому, кто знакомится с её достижениями. Сильное впечатление оставляют работы по синергетике искусства. Привлечение точных естественнонаучных подходов и моделей позволяет существенно продвинуться в понимании закономерностей творческого мышления и функционирования человеческого мозга. Например, теория фазовых переходов в ферромагнетиках является важной аналогией для локального описания нейрофизиологических свойств мозговой деятельности человека. Математическая модель нейронной активности обладает многими свойствами, характерными для ферромагнетиков.

Психология человека, казалось бы, далека от математики. Но и здесь все шире успешно используются математические модели, основанные на физических, биофизических, эволюционных и других аналогиях. Физической моделью распределения нейронной памяти может служить так называемое спиновое стекло - магнитное вещество с аморфной неупорядоченной структурой. Качественно свойства распределенной памяти можно понять из энергетических представлений. Зависимость свободной энергии спинового стекла как функции некоторой координаты в N-мерном пространстве конфигураций имеет множество минимумов, а значит и возможных состояний. Система оказывается способной создавать картины-образы, хранящие определенную информацию. Такая система способна распознавать вводимые извне образы по степени их близости к одной из записанных картин. Автор модели распределенной нейронной памяти Хопфилд показал глубокую аналогию свойств такой физической модели со свойствами нейронной сети.

Много аргументов в пользу синергетики можно найти и в сборнике "Синергетика" (изд. МГУ, 1998). В работе О.П. Мелеховой показано, что эмбриогенез - это природная синергетическая модель, и основные понятия эмбриологии могут быть изложены в терминах синергетики. Е.Д. Никитин отмечает некоторые почвенно-синергетические положения. В частности, делается вывод, что большинство чернозема России вышли за пределы порога своей устойчивости и оказались в критическом состоянии -- в точке бифуркации. Убедительно и аргументировано отмечаются важнейшие особенности самоорганизации Земли и Биосферы в работе О.П. Иванова. Не имея возможности говорить обо всех особенностях, нельзя не согласиться с самой трагичной - человечество действительно движется методом проб и ошибок, а корректировки всегда носили запаздывающий характер.

Соглашаясь с В.Г. Будановым, что объем и содержание синергетики взрывным образом расширяются, попытаемся понять этот феномен.

Человечество в процессе познания окружающего нас сложного мира двигалось по пути его анализа, что привело к созданию многих естественных и гуманитарных наук. На этом пути человечество добилось больших успехов и решило множество актуальных проблем. А какова главная цель науки? Мир един, все части, на которые мы его поделили при анализе, существуют только в единстве, а не порознь, поэтому наша главная задача -постигнуть его именно в единстве. Нам совершенно недостаточно знать, из чего состоит мир, нам необходимо знать, как все эти части взаимодействуют, куда мир движется и как развивается. Познание мира в его единстве, то есть во всей его сложности и многообразии позволяет следить за его динамикой и делать прогноз. Наука тогда становится наукой, когда она способна прогнозировать.

С этой точки зрения многовековой процесс развития науки обладает существенным недостатком: гипертрофированное внимание уделялось анализу, а объединяющий все науки процесс синтеза практически не развивался. В результате человечество столкнулось с серьезнейшими проблемами существования биосферы, что заставило в последние десятилетия заняться и объединительным процессом.

Почему важнейшему процессу синтеза уделялось недостаточное внимание? Произошло это не случайно. Во-первых, задача небывалого синтеза всех наук, занимающихся, например, изучением биосферы, чрезвычайно сложна. Например, из-за огромного влияния на деятельность биосферы человека, при синтезе необходимо учитывать не только естественные науки, а вообще все, которые влияют на развитие, в частности общественные науки и процессы. Разумеется, надо учитывать и экономические законы и процессы. Можно представить, насколько сложна и непривычна состыковка столь различных направлений исследований.

Во-вторых, на пути решения задач синтеза могут встречаться и принципиальные препятствия. В применении к биосфере это невозможность использования основного метода исследований в естественных науках - эксперимента. Критерий истины - эксперимент, ставящий окончательную точку при сосуществовании различных теорий, гипотез или мнений. Обычно эти теории являются достаточно грубыми моделями, каждая из которых чем-то пренебрегает или чего-то не учитывает в сложной действительности. Все учитывает только реальный процесс, который и дает нам истинный ответ. А с биосферой один неудачный эксперимент - и нет Человека в биосфере или самой биосферы.

Остается единственный путь - математическое моделирование при обязательном синтезе всех достижений науки. И вот в момент пика актуальности процесса синтеза появляется удачное слово - синергетика. Разумеется, его смысл быстро выходит за рамки первоначального узкого применения и требует периодической корректировки. Можно сказать, что синергетика -начало многовекового процесса синтеза различных направлений науки.

Необходимо отметить, что процесс синтеза развивался и до появления термина "синергетика". Удачной попыткой являются оценки ближайших перспектив человечества, проведенные группой ученых под руководством Денниса Медоуза с помощью глобальной компьютерной модели "МИР-З". Синтез наук осуществлялся на основе эмпирических данных о динамике пяти основных систем, взаимодействующих на нашей планете. Разработанная модель мировой системы была соответствующим образом тестирована. Исходя из данных за 1900 г. были получены результаты для 1970 г., хорошо совпадающие с фактическими данными. Выводы корректно сформулированы с важной (но иногда опускаемой недоброжелателями) оговоркой - "если существующие тенденции в пяти рассмотренных системах сохранятся". А сохраняются ли они или нет - лучший ответ дает время, прошедшее с момента публикации работы "Пределы роста" в 1972 г.

Обладает ли недостатками модель МИР-3? Да. В ней нет военного сектора, гражданских беспорядков, забастовок, коррупции, наводнений, землетрясении, Чернобылей эпидемий СПИДа и т. д. Поэтому модель чересчур оптимистична, её прогнозы могут отражать наиболее благоприятные пути развития реального мира.

Эмпирический подход может обладать и существенным недостатком, не позволяя иногда в случае очень сложных систем выяснить глубинную сущность явления. Помочь могут старые добрые "аналитические" науки. Например, глобальный кризис компьютерная модель предсказывает, а причину - нет.

Актуальнейшим вопросом современности является состояние биосферы. Мощное антропогенное воздействие на биосферу происходит в условиях, когда никто не может сказать, насколько близко её состояние к точке бифуркации. Есть серьёзная опасность, что мы можем пройти эту точку "явочным порядком". Рассматривая биосферу как открытую систему в рамках неравновесной термодинамики отметим, что в течение миллионов лет её энтропия непрерывно понижалась за счет потока солнечной энергии. Естественно, это приводило к усложнению структур и повышению организованности биосферы. Однако недавно (исторически совсем недавно) человек выступил как активный катализатор механизма бурного роста энтропии биосферы, сжигая накопленное за миллионы лет реализации процесса фотосинтеза органическое топливо. В результате деятельности человека энтропия биосферы начала возрастать. Граничные условия, обусловленные конечностью потока солнечной энергии, игнорировать невозможно. Решение глобальных проблем немыслимо без учета законов термодинамики (Г.А.Кузнецов, В.В.Суриков). Необходимо вернуть биосферу в состояние с постоянно уменьшающейся энтропией.

Разработка любых концепций устойчивого глобального развития должна обязательно учитывать максимально возможное значение энергии на душу населения, обусловленное конечностью нашей планеты.


Литература

1. Синергетика. Труды семинара. Выпуск 1. М. Изд. МГУ. 1998.

2. Медоуз Д.Х., Медоуз Д.Л., Рандерс И., Беренс В.В. Пределы роста. М. 1991.

3. Кузнецов Г.А., Суриков В.В. Концепция глобального развития: термодинамические аспекты. Вопросы философии. 1981, №12, с. 95-102.

 


 Синергетика и биология

М.И. ШТЕРЕНБЕРГ

В "Вопросах философии" (1997, № 3) опубликована подборка статей, посвященная синергетике, применимости ее понятийного аппарата к решению проблем различных наук. Пожалуй, не будет сильным преувеличением, если скажем, что общий смысл статей - оптимизм по поводу возможностей синергетики, в частности перспективы на ее основе построить теорию эволюции, справедливую для всех "эмпирических наук" (Э. Ласло). Нас будет интересовать именно последний тезис в контексте того, что дает использование таких понятий, как "хаос", "бифуркация", "порядок" и др. для понимания феномена эволюции. В рамках такого анализа с неизбежностью придется обращаться и к понятиям термодинамики, поскольку корни синергетики находятся в термодинамике открытых систем. В статье аргументируется точка зрения, что область применения синергетики в принципе ограничена некоторыми чисто физическими процессами.

Хаос и порядок

Из статистического выражения второго закона термодинамики следует, что с ростом энтропии расположение частиц (частей) системы становится все более и более хаотичным. Это положение произвело на общество такое впечатление, что стало философским и культурным достоянием. "Энтропия и беспорядок не только похожи, а есть одно и то же", - утверждает Р.Е. Пайерлс [I]. Э. Шредингер иллюстрирует это на примере расплавления кристалла, в результате чего "изящные и устойчивые расположения атомов или молекул в кристаллической решетке превращаются в непрерывно меняющиеся случайные распределения" т.е. в жидкость [2]. Как известно, наиболее наглядно свойства энтропии проявляются в изолированных системах, где она монотонно возрастает. Однако множество примеров противоречит приведенным утверждениям. Вот одно из них. Возьмем хаотическую смесь льда и воды и изолируем ее. Если вода холодная и лед достаточно охлажден, то эта хаотическая смесь превратится в упорядоченный ледовый кристалл. Этот пример обладает достаточной общностью, ибо он может быть реализован на всех смесях типа твердая - жидкая фаза. Естественно, возникает предположение, что рост энтропии может сопровождаться упорядочением, а это противоречит выводам, непосредственно вытекающим из статистического выражения второго закона термодинамики.

Очевидно, что полярным по отношению к понятию "хаос" является понятие "порядок". Но как оно понимается? Произвольное обращение с этим понятием неоднократно встречается в научных работах. Но, как пишет Р. Фейнман, "Порядок в физическом смысле вовсе не должен быть полезным для людей. Это слово просто указывает на существование какой-то определенности" [З]. Представляется, что наибольшая определенность достигается в предложении Дж. фон Неймана считать наиболее упорядоченной ту систему, состояние которой описывается наименьшим количеством информации. Его нужно дополнить условием, чтобы сравнение производилось на одном уровне описания, на чем, собственно, и построено различие между термодинамикой и статистической физикой. Действительно, если, например, на молекулярном уровне равновесное состояние раствора описывается относительно сложными статистическими зависимостями, то на макроуровне оно выразится как постоянство объема, температуры и концентрации. С этой точки зрения примеры, на которые опирается И. Пригожий для своих построений, не представляются убедительными. Он строит свои рассуждения, в частности, на аналогии с течением жидкости, когда от микровоздействия (бифуркации) ламинарный поток переходит в турбулентный, где вихри символизируют возникший порядок. Чувствуя малоубедительность этой аналогии, Пригожин пишет: "Что мы называем порядком? Что мы называем беспорядком? Каждый знает, что определения меняются и выражают чаще всего суждения". Для подтверждения этого в качестве примера он приводит кристалл, считающийся образцом упорядоченности, но опровергает это утверждение тем фактом, что в узлах кристаллической решетки молекулы хаотически колеблются [4]. На макроуровне состояние ламинарного потока в круглой трубе описывается сравнительно простой зависимостью.

В то же время, несмотря на тысячи работ, посвященных проблемам турбулентности, выражения для описания состояния турбулентного потока не найдено. Если же считать вихрь упорядоченным состоянием, то тогда нужно сказать о том, что этот быстро изменяющийся, по сравнению с ламипарностью, локальный порядок возникает за счет перехода в хаотическое состояние массы всего, прежде упорядоченного, потока. В таком случае утверждение, что переход от ламинарности к турбулентности есть возникновение порядка из хаоса, представляется более чем сомнительным. Аналогично на макроуровне, на котором возникают турбулентные вихри, кристалл представляется как строго упорядоченная система, описываемая простым?! математическими выражениями.

Рассмотрим теперь второй пример из той же работы И. Пригожина о частичном разделении газов при поступлении тепла в их смесь. В этом случае на макроуровне возникает довольно сложный градиент концентраций. Впрочем, и статистическое описание на микроуровне частично разделенной смеси газов оказывается более сложным, чем статистическое описание на микроуровне однородной смеси газов. Утверждение о том, что при поступлении тепла в смесь возникает упорядочение из хаоса, с принятых выше позиций представляется сомнительным. Здесь невольно вспоминается уже приведенное высказывание Р. Фейнмана. Действительно, разделенная смесь интуитивно представляется нам упорядоченной, ибо это является целью многих технологических процессов, например, при отделении металла от шлака. Но если необходимо разделить по объему металла легирующую добавку, то порядком представляется равномерное распределение молекул добавки между молекулами металла.

Таким образом, оказывается, что здание синергетики построено на шатком основании аналогий, анализ которых показывает их несостоятельность. В то же время причины, по которым эти аналогии некритически воспринимаются широкой аудиторией, находятся уже не на поверхности: они связаны с физическим смыслом действительно непростой функции - энтропии и его трактовкой. Поэтому начнем свой анализ с попытки вникнуть именно в ее смысл. О том, что представляет собой в физическом отношении энтропия, совершенно определенно высказался Дж. фон Нейман: "Никто не знает, что же такое энтропия" [5]. Это утверждение до сих пор не потеряло своей силы. Обратимся к истории этого понятия. Оно возникло в термодинамике в результате стремления унифицировать элементарные выражения тепла и работы. Как известно, элементарная работа есть произведение потенциала - интенсивного фактора (силы, давления, химического потенциала и т.п.) на приращение координаты экстенсивного фактора (пути, объема, массы и т.п.) . Иными словами, как потенциал, так и координата в выражении работы имеют вполне определенный физический смысл. Что же касается выражения теплоты , где Q - тепло, получаемое системой, Т - абсолютная температура, S - энтропия, то здесь определенный физический смысл имеют только приращение тепла и абсолютная температура.

Таким образом, стремление навязать природе удобную для математических операций форму (унифицировать форму выражения тепла с формой выражения работы) обернулось появлением функции с непонятным физическим смыслом. Она оказалась удобной для доказательства необратимости процессов, но неэффективной в практических приложениях. Для того чтобы разобраться в сложившейся ситуации обратимся к энциклопедическому курсу термодинамики К.А. Путилова. Вот что говорится в нем по этому поводу: "Теплота и работа являются неравноценными формами передачи энергии... Работа может быть непосредственно направлена на пополнение запаса любого вида энергии... Теплота же непосредственно, т.е. без промежуточного преобразования в работу, может быть направлена на пополнение запаса только внутренней энергии тел". И далее: "Внутренняя энергия тела является единственной энергией тела, имеющей статистическую основу..." |6]. Отсюда следует, что энтропия, как и внутренняя энергия, являются непосредственно объектами изучения статистической физики. Но обе эти функции для реальных объектов непосредственно в рамках статистической физики вычислены быть не могут. Не могут быть определены они и в эксперименте. В силу этого энтропия вычисляется в термодинамике через измеряемые величины - температуру и количество тепла. Но на этом трудности не кончаются, ибо в термодинамике энтропия выступает в "двусмысленной" роли. С одной стороны (что следует из выражения , она растет при равновесном нагреве и убывает при равновесном остывании тела, сопутствуя изменению его внутренней энергии. Не случайно, поэтому она - единственная термодинамическая функция, имеющая одинаковую размерность с другой - теплоемкостью. В этих случаях изменения значения энтропии не связаны с изменением равновесия в системе - условия, характеризующего ее потенциальную работоспособность.

Но обычно большой интерес, и в том числе и в биологии, энтропия вызывает в своем втором значении - как мера неравновесия. В этой роли она являет себя как характеристика потенциальной работоспособности - той части энергии, которая при наличии преобразующего механизма может произвести работу. Именно в этом смысле она интересует как теплотехников, так и биологов, так как характеризует возможность системы осуществить работу, обеспечить за счет такой работы жизнедеятельность. Именно эта роль энтропии как характеристики состояния системы и положила, начиная со знаменитой речи Л. Больцмана, произнесенной им в 1886 г., начало поискам определения жизни как явления, способного уменьшать свою энтропию [7].

Именно эти две ипостаси энтропии и обусловливают ту двусмысленность, о которой говорилось выше: по изменению значения энтропии, не зная состояния частей системы, нельзя сказать, связано ли это изменение с изменением только внутренней энергии системы или еще и с изменением ее потенциальной работоспособности.

Но и как характеристика неравновесия энтропия определяет однозначно способность системы осуществить работу. Наличие двусмысленностей вносит путаницу в попытки использовать энтропию в конкретных приложениях в различных областях знания, в том числе и в биологии.

Реальные организмы хорошо справляются с этими двусмысленностями. В случае необходимости поддержания температурного гомеостаза многие из них, особенно высшие, обладают механизмами для повышения температуры (сопровождаемой соответственно ростом энтропии) и понижения ее (сопровождаемой убылью энтропии). Однако и действия, способствующие повышению потенциальной работоспособности (сопровождающейся понижением энтропии, характеризующей в этом случае меру неравновесия), ограничены известными пределами. Так, накопление жира, обеспечивающего потенциальную работоспособность животного, при превышении определенного запаса может привести его к гибели, как вследствие снижения подвижности, так и вследствие внутренней патологии. Таким образом, организмы поддерживают оптимальное значение энтропии подобно тому, как они это делают с сотнями различных веществ с целью сохранения гомеостаза. Таким образом, энтропийные характеристики и в случаях, указывающих на неравновесность, не являются ни определяющими, ни специфическими для организмов.

До сих пор рассматривался физический смысл энтропии в ее классическом термодинамическом выражении. Рассмотрим теперь смысл этого понятия в статистической трактовке второго закона термодинамики. Наиболее наглядно этот смысл проявляется в фазовых переходах первого рода, например, плавления. В этом процессе тепло, полученное системой при постоянной температуре фазового перехода, связано с энтропией простейшей зависимостью .Поскольку кинетическая энергия молекул, находящаяся в прямой зависимости от Т, практически не изменяется, то, очевидно, что поступающее тепло расходуется на ослабление связей между частицами, образующими кристаллическую решетку, т.е. на увеличение потенциальной энергии связи молекул. Этот случай позволяет увидеть в чистом виде одну из составляющих физического смысла энтропии, обычно маскируемую одновременным изменением кинетической и потенциальной энергий, и выявить, что энтропия - это функция, отражающая и величину потенциальной энергии связей микрочастиц. Ее монотонный рост в прямой зависимости от температуры нарушается фазовыми переходами, когда потенциальная энергия связей изменяется скачком. Особенно большим этот скачок может быть при переходе п газовую фазу, когда фактически происходит разрыв связей между молекулами вещества. При этом расстояние между ними может увеличиваться на несколько порядков (у воды объем при переходе в пар возрастает примерно в 1700 раз) и дальнейший рост потенциальной энергии частиц становится незначительным. И лишь тогда приложение статистического выражения второго закона становится практически адекватным.

Существование организмов определяется, в первую очередь, сохранением их структуры, которая, в свою очередь, зависит от прочности связей слагающих ее частей, характеризуемой их потенциальной энергией. Отсюда очевидно, что статистическое выражение второго закона термодинамики в общем случае непригодно для выражения энтропии и. в частности, для исследования специфики жизни. Это связано с тем, что оно выведено на основании идеальной модели, в которой все взаимодействия частиц сводятся к упругим соударениям друг с другом и со стенками сосуда, а все остальные взаимодействия игнорируются.

Рассмотрим теперь в ином свете классическое положение о росте энтропии в изолированной системе. Предположим, обмениваются теплом две ее части: 1 и 2,имеющие температуру и . Пусть от части 1 к части 2 перейдет тепла. При этом изменится как кинетическая - ,так и потенциальная - компоненты внутренней энергии обеих частей .

Это значит, что потенциальная энергия, т.е. энергия связей частиц в изолированной системе в итоге возросла за счет убыли кинетической.

Из изложенного следует, что элементарный прирост энтропии здесь слагается из трех компонент: за счет уменьшения кинетической энергии, сужающей фазовое пространство и соответственно изменяющей статистическое слагаемое: за счет прироста потенциальной энергии; за счет перехода распределения скоростей молекул к наиболее вероятному .

Из этих трех слагаемых Л. Больцман рассматривает лишь третью составляющую. Отсюда и "парадоксы" типа тех, которые возникают при росте упорядоченности с ростом энтропии в изолированной системе.

Таким образом, физический смысл энтропии раскрывается как довольно сложная система факторов, требующих кропотливого исследования, которое оказывается весьма затруднительным, после того как были объединены в общих выражениях разнородные понятия работы и тепла, и тем более после математических операций над ними.

В то же время потенциал - температура, входящая в выражение энтропии, с одной стороны, является измеримой величиной, с другой - может рассматриваться как одна из основных причин необратимости процессов. С этой точки зрения представляется возможной еще одна формулировка второго закона, исключающая понятие энтропии. Другими словами, этот закон может быть сформулирован как закон возникновения тепла в любом неравновесном процессе и самопроизвольном необратимом выравнивании теплового потенциала.

Синергетика в биологии

Выше были рассмотрены основные понятия термодинамики и синергетики, наиболее часто используемые в анализе феномена жизни. Рассмотрим теперь еще одно из основных понятий синергетики - "бифуркация". Как известно, под бифуркацией у И. Пригожина и других авторов понимается слабое воздействие, радикально изменяющее ход процесса. В то же время, насколько нам известно, классификации бифуркаций не существует. Однако между различными классами бифуркаций, как представляется, есть фундаментальные различия.

К первому классу бифуркаций могут быть отнесены воздействия на тот вид систем, которые представлены потоками. Таковы, например, реки, русла которых практически без затрат энергии поворачивают потоки воды к тому или иному водоему (аттрактору) или зеркала, поворачивающие световой луч на тот или иной объект.

Что же касается воздействия на стабильные (метастабильные) объекты, то прежде, чем коснуться их, нам придется рассмотреть некоторые общие принципы образования таких систем.

Известно, что частицы обладают свойствами, обусловливающими их способности к различным взаимодействиям: электромагнитным, сильным, слабым, гравитационным, взаимодействия с (р-полем, которые имеют место па разных расстояниях - от бесконечно большого (электромагнитные, гравитационные) до расстояний, измеряемых ангстремами (сильные, слабые). Отметим три обстоятельства.

1. Слабые связи могут препятствовать возникновению более сильных. Так, электрическое отталкивание атомных ядер может препятствовать их слиянию, при котором возникает более сильная связь.

2. Сложение слабых сил может привести к их превосходству над более сильными и определить характер связей. Например, сила гравитации в массивных звездах может превышать силу других видов взаимодействий.

3. Из 1 и 2 следует, что картина мира зависит от истории взаимодействий частиц.

В силу перечисленных обстоятельств, очевидно, что при разрыве прежних связей первоначально возникает хаос. Затем, за счет сил, изначально присущих частицам, возникают новые структуры. Существенно же важным явлением, которому обязано все разнообразие существующих систем, являются потенциальные барьеры.

Действительно, термоядерный синтез более тяжелых элементов из более легких идет с выделением энергии точно так же, как распад тяжелых. Следовательно, оба эти процесса термодинамически вероятны, так как обеспечивают реализацию второго закона термодинамики. И, тем не менее, устойчивые изотопы существуют миллиарды лет, не изменяясь в земных условиях ни качественно, ни количественно.

Образно говоря, в энергетическом плане периодическая таблица химических элементов может быть представлена как ряд спускающихся с обоих ее концов каскадов энергетических "озер", отделенных друг от друга "плотинами" потенциальных барьеров, сходящихся к атому железа, переход от которого в любую сторону требует лишь "подъема" - поглощения энергии.

Разнообразием элементов, а также наличием потенциальных барьеров химического происхождения обусловлено и разнообразие химических соединений, не только самых устойчивых. Второй закон термодинамики в статической формулировке не рассматривает свойства структур. Термодинамика ничего не говорит и об общих причинах того, что по мере остывания Вселенной процессы в ней не замирали в метастабильных состояниях материи в виде энергетических "озер" за "плотинами" потенциальных барьеров. Она говорит лишь о вероятности возникновения процесса, если он направлен в сторону деградации энергии. Во многих случаях вероятность процесса выравнивания вызвана тем, что малое воздействие высвобождает большую энергию из-за потенциального барьера. В свою очередь, эта выделившаяся энергия частично идет на освобождение большей, чем первая часть потенциальной энергии и т.д. Процесс, таким образом, развивается с положительной обратной связью, т.е. превращается в цепной. Назовем бифуркации, инициирующие такой процесс, бифуркациями второго рода. Именно в области изучения этих процессов в синергетике в основном и достигаются реальные результаты.

Для иллюстрации таких процессов выберем наиболее наглядный пример - речную плотину. Чем выше уровень воды, тем больше вероятность того, что вода просочится сквозь плотину и под ней. Если же она найдет выход, то будет стремиться ускорить процесс выравнивания. Тот же принцип реализуется и в разнообразных цепных процессах: механических (камнепад), электрических (пробой изоляции, газовый разряд), химических и ядерных цепных реакциях. В соответствии с этим принципом происходят и процессы образования небесных тел. Притягивая к себе вещество, небесные тела увеличивают свою массу, но чем больше масса, тем более нарастает мощь этих процессов. В итоге возможно образование новых потенциальных барьеров за счет синтеза ядер легких химических элементов. Эти процессы будут препятствовать тепловым расширением процессу сжатия. А. Дюкрок назвал совокупность таких процессов, регулирующих устойчивость небесных тел, "кибернетикой космоса" [8]. Термоядерный процесс, протекающий на Солнце, обеспечивает возникновение химических потенциальных барьеров в соединениях, синтезируемых на Земле зелеными растениями и т.п.

Существуют ситуации, когда потенциальный барьер может быть устранен или восстановлен за счет слабого энергетического воздействия. Если та же плотина имеет заслонку у своего дна, то небольшое приложенное к ней условие обеспечит неограниченный и в то же время легко управляемый переток воды из верхнего бьефа в нижней. Такой же эффект будет достигнут, если, например, слабое механическое воздействие введет катализатор в контакт с соответствующим субстратом или поворотом выключателя будет замкнута электрическая цепь и т.д. Назовем бифуркации подобного вида бифуркациями третьего рода. Именно эти бифуркации и являют собой информацию, т.е. специфическое воздействие на структуры, характерные лишь для живых и автоматических систем [9]. Именно эти процессы отличают системы в качестве организованных. Что же касается синергетики, то она занимается изучением упорядоченных систем, что отнюдь не является специфическим свойством организмов и автоматов.

Характерно, что в синергетике не делается различия между этими принципиально разными видами бифуркаций, но именно здесь проходит водораздел между косной и живой природой.

Попытки использовать термодинамику для выяснения специфики жизни предпринимались задолго до возникновения синергетики. История этого подхода насчитывает уже более сотни лет и начинается с уже упоминавшейся речи Л. Больцмана. Согласно Больцману организмы - это открытые системы, уменьшающие свою энтропию за счет внешнего источника. Эту идею поддержали К.А. Тимирязев, Ф. Аурбах, А.Е. Ферсман, В.И. Вернадский, Э.С. Бауэр, А.И. Опарин и другие ученью. Э. Шредингер сформулировал это положение наиболее коротко: "Отрицательная энтропия - это то, чем питается жизнь" [2. С. 74]. В 1901 г. Н.А. Умов выдвинул положение о том, что организмы содержат нечто вроде демона Максвелла, сообщающего им упорядоченность. И хотя Л. Берталанфи показал, что энтропия реальными открытыми системами может "выбрасываться" в окружающую среду, и из этой же среды может извлекаться отрицательная энтропия, точка зрения Л. Больцмана на специфику жизни как негэптропишюго образования доминирует до сих пор. Наиболее известные современные авторы в этой области И. Пригожин, Ж. Николис, М. Эпген, А.П. Руденко и ряд других ученых, видят специфику жизни в стационарности процессов, протекающих в организме. Феномен жизни относится ими к дисипативным системам с устойчивым неравновесием. Но к таким системам относятся не только организмы, но и любые потоки. В частности, круговорот воды в природе имеет споим энергетическим донором тот же источник, что и биосфера - Солнце. При этом биосфера потребляет лишь ничтожную часть солнечной энергии по сравнению с круговоротом воды. Когда Земля охлаждается, не получая солнечного света, за счет энергии облаков совершается работа, приводящая к выпадению осадков. Отсюда начинается круговорот, обеспечивая поступление солнечной энергии на остывшую земную поверхность. Таким образом, и здесь пополнение энергии и поддержание устойчивого неравновесия осуществляется подобно тому, как это делают организмы, уже непосредственно за счет собственной энергии и собственной деятельности. Новый возникающий при этом цикл испарения обеспечивает не только пополнение энергии, но и температурный гомеостаз земной поверхности, вновь закрывая ее облаками. Таким образом, круговорот воды уподобляется с этих позиций живому. Тем не менее, очевидно, что жизнь имеет принципиальные отличия от круговорота воды. Это специфическое отличие может быть найдено, если мы вспомним, какую роль в физике XX в. сыграло понимание того факта, что свет, представлявшийся непрерывным потоком, на самом деле излучается дискретными квантами, огромное множество которых, а также особенности нашего восприятия, и создавали представление о потоке. Сам автор этого открытия М. Планк, как известно, в течение нескольких лет сомневался в реальности этого, полученного теоретическим путем, результата.

Подобное "квантование" осуществляется в живом за счет реакций на сигналы и обеспечивается соответствующими структурами, что позволяет организму функционировать гораздо экономичнее, чем в стационарном режиме и главное в соответствии с обстоятельствами, а это и принципе невыводимо из энтропийных характеристик. Различные подсистемы организма - дыхательная, пищеварительная, выделительная и т.н. - включаются на значительную мощность попеременно, но сигналам о потребности. В это время остальные подсистемы работают лишь на поддержание "боеготовности". И лишь суммирование и осреднение по времени и энергозатратам создает впечатление стационарных потоков массы, энергии и энтропии.

Энергетическое превосходство реальной жизнедеятельности заключается в том, что если стационарный режим требует постоянного уровня энергозатрат, то реальные организмы, работая в информационном режиме, могут почти полностью выключать из работы свои подсистемы.

Сигнально - информационный подход к проблеме жизни позволил "проквантовать" организмы и автоматы, выделив их элементарные структуры, на которых определяются единицы информации, знания, смысла и т.п. На основе этих элементарных единиц строятся, подобно молекулам из атомов, более сложные "надмолекулярные" и высшие структуры [9].

И. Пригожий считает, что необратимость определяется отсутствием единого пути возврата системы к исходному состоянию в силу множества возможных бифуркаций и аттракторов, создающих многовариантность траекторий движения нестабильной системы во времени. Как представляется, однако, более углубленное понимание этого феномена следует из понимания этапов эволюции Вселенной. Каждое изменение характеризуется появлением новых закономерностей. Так было после Большого взрыва, когда от единого взаимодействия поочередно отделялись гравитационное, сильное, слабое и электромагнитное. До возникновения жизни не существовало законов биологии, до появления общества - законов истории и т.п. Лишь неосведомленность о характере этих процессов и накладываемых ими ограничений позволяет нам предполагать неограниченную многовариантность траекторий развития мира в целом и каждой отдельной его системы.

Ограничения многовариантности траекторий движения проявляют себя на всех уровнях материи, начиная от атомных ядер, разнообразие которых ограничено принципом Паули, и кончая организмами, которые должны быть вписаны в геобиоценоз, а для человека еще и в социум. В более же общей формулировке каждый объект должен отражать Космос и его эволюцию, что накладывает сильное ограничение на возможное разнообразие и на кажущееся множество аттракторов [9J. Можно представить себе, каким образом создавались условия для возникновения жизни и ее эволюции к высшим формам - не благодаря антиэнтропийным процессам, а наоборот - благодаря процессам, связанным с ростом энтропии. Начнем с примера, который мы заимствуем у А. Дюкрака [8]. Растянем пружину, закрепленную одним концом. В ней возникнут колебания, которые длились бы вечно, если бы энергия упорядоченного движения пружины не переходила в хаотическое тепловое движение молекул. Именно это свойство обеспечивает возможность упорядоченных процессов на макроуровне. Действительно, без необратимости, отраженной во втором законе термодинамики, мир уподобился бы бесконечно колеблющейся пружине. Эти колебания по разным потенциалам то ослабевали бы, то усиливались. Мир лишился бы устойчивых форм. Как показывает У.Р. Эшбп, адаптация к такому миру была бы невозможна [10] и жизнь не могла бы ни существовать, ни даже возникнуть. Но, очевидно, что для углубленного понимания эволюционных процессов необходимо уяснить пути, по которым происходит реализация второго закона термодинамики. Широкое распространение разнообразных процессов выравнивания, как цепных, так и каталитического типа, позволяет сформулировать принцип максимизации как присущее энергии стремление к выравниванию. Однако процессы выравнивания инициируются не только бифуркациями. Они усиливаются еще и теми свойствами энергии, которые имеют иной характер проявления. В силу их важности для возникновения и эволюции жизни представляется целесообразным зафиксировать их характер в отдельном принципе - дифференциации энергии при наличии сопротивления процессу выравнивания потенциалов. Так, электрический ток, движущийся по проводнику малого сопротивления, порождает лишь небольшое выделение тепловой энергии, если же сопротивление будет возрастать, то к выделению тепла прибавится световое излучение, а затем и химический процесс (горение проводника) и сопровождающий его звуковой импульс. Или болид, двигаясь к Земле, по мере нарастания плотности атмосферы может вызвать вначале разогрев ее и себя, затем свечение, а потом звук и механическое разрушение.

Рассмотрим под углом зрения изложенных выше соображений частный случай проявления жизни в виде земной ее формы с материальной и энергетической точек зрения. Очевидно, с наибольшей вероятностью жизнь должна возникнуть на небесном теле, обладающем максимальным разнообразием потенциальных барьеров. Для реализации такого условия небесное тело должно пройти эволюцию от температур порядка миллиардов градусов до температур, близких к абсолютному нулю. В таком случае оно будет обладать полным набором элементов периодической таблицы, и представлять собой настоящий консервант различных потенциальных барьеров: ядерных, химических, электрических, механических и т.п. С этой точки зрения в масштабах звездных температур Земля как раз и является подобным небесным телом с полным набором химических элементов и температурой ее поверхности, практически не отличающейся от абсолютного нуля.

Сопротивление атмосферы, воды и других химических соединений и веществ потоку солнечных лучей приводит, и соответствии с принципом дифференциации, к трансформации солнечной энергии в различные формы, главной из которых является круговорот воды в природе, и лишь небольшая часть расходуется на химические реакции. Эти, и в первую очередь каталитические, реакции [II], по-видимому, и положили начало жизни. Возникнув, жизнь, благодаря способности к размножению, развивается как цепной процесс в соответствии с принципом максимизации.

Предполагается, что первыми организмами были археобактерии, извлекающие энергию за счет окисления неорганики, в частности железо- и серобактерии. Первоначально между первыми видами организмов не происходило борьбы за источники энергии, имевшейся в избытке. Недостаток энергии не играл никакой роли в биосфере на первых порах ее возникновения и развития, вопреки мнению Больцмана. Но по мере увеличения биомассы конкуренция за источники энергии представляется как сопротивление принципу максимизации, и тогда вновь "включается" принцип дифференциации. Он проявляется на всех этапах развития жизни через образование новых видов и освоения ими различных экологических ниш. Так, в настоящее время почти на каждый элемент периодической таблицы существует вид бактерий, ведущий свое начало от археобактерии, извлекающий энергию за счет его химических преобразований.

Если возникновение и развитие археобактерий можно рассматривать как локальный планетарный процесс, то появление зеленых растений, черпающих энергию от Солнца, носит уже непосредственно космический характер. И здесь срабатывает принцип максимизации, выражающийся к появлении организмов - гетеротрофов, пожирающих зеленые растения, деятельность которых дает выход накопленной в них энергии.

Следующий этап, на котором был реализован принцип максимизации, это появление аэробных организмов, способных окислить глюкозу кислородом воздуха за счет использования энергии метастабильных состоянии, обусловленных химическими связями. Энергия, извлекаемая из глюкозы в этом процессе, в 9 раз превышает анаэробный способ.

С энергетической точки зрения действие принципов максимизации и дифференциации проявилось на этапах повышения организации биологических видов. Каждый новый уровень организации требует новых веществ и условий для своего возникновения и существования - это разные интервалы температур, давлений, концентраций и т.п. Разнообразие веществ, образующих различные организменные структуры, с энергетической точки зрения является следствием принципа дифференциации, позволяющего диссипировать энергию разнообразными путями. Чем из большего количества компонентов состоят организмы, тем уже область их совместного существования. Этим и обусловливается необходимость гомеостаза, который обеспечивает относительную независимость организма от внешней среды. Родоначальник учения о гомеостазе К. Бернар говорил, что он (гомеостаз) есть условие свободы [II]. Для поддержания гомеостаза нужны специальные механизмы, работа которых требует энергозатрат. В итоге даже бактерии тратят на гомеостаз почти половину своей энергии покоя. Что же касается высокоорганизованных, то на него она уходит почти вся. Так, переход на терморегуляцию повышает расход энергии почти на порядок. Но сложные организмы требуют не просто гомеостаза, а полнгомеостаза, т.е. разного гомеостаза для разных своих органов. Например, желудочно-кишечный тракт млекопитающих разбит на ряд отделов, в каждом из которых поддерживается свой гомеостаз. Мозг защищен от ненужных или опасных веществ, которые могут попасть в него из крови, фильтром-гомеостазом, называемым гематоэнцефалическим барьером. В итоге, если кпд простейших при построении новых тканей составляет 70-80%, то кпд высокоорганизованных снижается уже до доли процента [13]. Иными словами, появление высокоорганизованных гетсротрофов - это уже не просто преодоление, а прорыв своеобразного потенциального барьера, созданного растениями на пути реализации принципов максимизации.

Но прорыв этот расширяется еще одним фактором - развитием мозговых структур в сторону все более возрастающей способности не только к управлению насущными потребностями, но ко все более дальнему, широкому и надежному моделированию реальности для постановки своих целей и путей их достижения. Это потребовало их увеличения, усложнения и увеличения энергообеспечения. В итоге, мозг человека, составляющий примерно 2% от всего тела, поглощает примерно 20% его энергетического бюджета в состоянии покоя. Таким образом, с энергетической точки зрения цефализация находится на острие эволюционного процесса как следствие принципа максимизации.

С появлением человека и цивилизации потребление энергии выросло настолько, что если бы все население Земли перешло на уровень потребления индустриальных стран, то экологическая катастрофа последовала бы немедленно. И, наконец, человечество стало разрушать гораздо более мощные потенциальные барьеры - ядерные - и устремилось в поиске новых экологических ниш в космосе.

Время и синергетика

Чрезвычайно жесткое ограничение на огромное разнообразие объектов, допускаемое естественными законами, предусматривает требование соответствия каждого объекта микрокосму. Им является не только человек, как считали древние философы, но и любой камень. Действительно, он должен уравновешивать воздействие на него множества разрушительных воздействий ближнего космоса: силы гравитации, растворяющего действия воды, разрушительных перепадов температуры и химических веществ, содержащихся в воде и воздухе, механических воздействий и т.д. Любой объект возникает тогда, когда эволюция Космоса обусловливает его возникновение, существует - пока является микрокосмом и погибает, когда перестает отражать изменившийся Космос.

Кроме того, каждый объект несет в себе историю эволюции Космоса. В микрокосме, представленном камнем, она прочитывается в нуклонах атомных ядер. возникших из кварков в результате расширения и остывания вещества после "Большого взрыва". Во входящих в его состав атомах тяжелее водорода прочитывается история тяжелых звезд, в недрах которых они были синтезированы, в химическом составе и структуре слагающих его минералов - геологическая история Земля.

Исходя из понятия микрокосма, попытаемся понять причину открытого А. Эйнштейном относительного изменения хода времени, а также массы и размера тела, скорость которого изменяется по отношению к некоторому данному телу. Как известно, А. Эйнштейн объясняет, что происходит при изменении скорости тела, но остается открытым вопрос, почему это происходит. Ответ на него, как представляется, может быть следующий: изменение хода времени в объекте, а также изменение его размера и массы при изменении его скорости происходят как результат перестройки его взаимодействия с иными космическими объектами, т.е. изменения его, как микрокосма. Выраженные в известной математической форме, эти изменения наводят на мысль о дополнительном факторе упорядочения Космоса. Космос, что означает по-гречески порядок, объединен в одно упорядоченное изотропное целое силами гравитации, обменом лучистой энергией и корпускулярными потоками. К этим факторам, по-видимому, могут быть отнесены и упомянутые изменения в космических объектах, компенсирующие изменения их относительных скоростей.

Характеризуя синергетическую концепцию И. Пригожина, а также ее предысторию, М.В. Кузьмин пишет: "Понятие энтропийной "стрелы "времени" восходит, как известно, к Больцману, акцентировано Эддингтоном и развивается в виде статического энтропийного ансамбля у Рейхенбаха... подход Пригожина вторит Больцману, Эддингтону и Рейнбаху. Позитивным моментом в подходе Пригожина является то, что... у Пригожина принцип роста энтропии по существу не статистический факт, а универсальный закон природы" [14]. Здесь, по-видимому, имеется в виду акцент на истории системы, прошедшей через ряд бифуркаций, усиливая тем самым необратимость, обусловленную энтропийными процессами.

Очевидно, что наличие стрелы времени в глобальном масштабе обусловлено расширением Космоса как следствием "Большого взрыва". Поскольку каждый существующий объект является микрокосмом, в итоге стрела его внутреннего времени, определяющая направление протекающих в нем процессов, связана с глобальной стрелой. Рассмотрим, как реализуется время во Вселенной. Здесь обращает на себя внимание так называемый антропный принцип. Он был сформулирован после того, как рядом отечественных и зарубежных ученых (Я.Б. Зельдовичем, И.Д. Новиковым и др.) были произведены подсчеты, связанные с вариациями возможных значений мировых констант (скорости света, заряда и массы электрона и т.п.). Оказалось, что при относительно небольших изменениях их величин Космос оказался бы принципиально иным и, по крайней мере, наша форма жизни и соответственно человечество не могли бы возникнуть. Создается впечатление, что эти константы как бы были предварительно кем-то подсчитаны. Обращает на себя внимание и другой факт -совпадение структуры основных законов мироздания. Так, закон всемирного тяготения в формулировке Ньютона, закон Кулона и закон магнитного взаимодействия имеют совершенно одинаковую структуру. Более того, как показано новосибирским физиком Ю.И. Кулаковым, все физические законы имеют в принципе одинаковую структуру. Это позволяет сразу характеризовать вновь открытые законы либо как соответствующие реальности, либо как априори ошибочные.

В настоящее время появляется множество работ, указывающих на необходимость анализа понятия внутреннего времени систем. Это время служит для измерения как периода жизни той или иной системы, так и длительности различных ее этапов. Естественно, что особым классом являются биологические системы. В.И. Вернадский еще до работ И. Пригожина считал, что стрела времени, направление которой определяется ростом энтропии, непригодна для характеристики биологических процессов. Свое мнение он основывал на антиэнтропийном характере жизни. В качестве характеристики он предлагал определение направления стрелы времени сменой поколений организмов [15]. С.В, Мейен в свою очередь предлагал для определения биологической стрелы времени и его исчисления использовать смену таксометрических единиц в эволюционном процессе [16]. В свою очередь Т.А. Детлаф предложила для тех же целей существенно меньшую единицу времени, в качестве которой выступает продолжительность митоза - клеточного деления у зародышей большинства пойкилотермных - холоднокровных - животных [17]. Однако эти циклы иные по длительности как у ряда пойкилотермных, так п у гомойтермных животных, что делает предложенную ею единицу исчисления биологического времени не универсальной. Кроме того, в клетке в секунду происходят миллионы ферментативных актов, определяющих ее жизнедеятельность, каждый из которых являет собой элементарный информационный процесс [9]. Проблема исчисления внутреннего времени организмов осложняется и тем фактом, что ему свойственны вариации в весьма широких пределах относительно внешнего времени. Действительно, например, срок между митозами одноклеточных измеряется минутами или часами. В то же время, если в жизнедеятельность простейших вторгается период анабиоза, то срок этот во внешнем исчислении может растянуться на миллионы лет, в то время как но внутреннем исчислении (число митозов) он остается неизменным.

Это делает необходимым анализ понятия анабиоза с целью определения, насколько типичным оно является для понимания специфики жизни и соответственно ее хронометража. Сошлемся на мнение крупного теоретика биологии Д. Бернала, полагавшего эту особенность настолько важной, что предлагал включить ее в общекосмического определение жизни. Как представляется, это мнение может быть поддержано следующими соображениями. Так, в работе Б.Н. Медникова приводится ряд примеров, когда количество видов, определяемых по фенотипу, почти на порядок превышает их реальное число. Это связано с тем, что те или иные их фенотипические проявления, приводившие систематиков к подобным ошибкам, определялись условиями развития особи [18]. Известно, что пол крокодила определяется температурой, при которой находится кладка. При смене характера питания вырабатываются ферменты для усвоения новой пищи. И, наконец, упомянем тот общеизвестный факт, что в процессе эмбриогенеза и онтогенеза новые органы появляются в определенной последовательности. Все эти, казалось бы, разнородные факты свидетельствуют о том, что анабиоз начинается уже на уровне молекулярной программы. Ее части до времени могут находиться в анабиотическом состоянии или же вообще не проявляться в течение всей жизни особи. Отметим также, что способность пребывать о состоянии полного или частичного анабиоза свойственна не только простейшим, но и ряду высших животных (сурки, медведи). О важности анабиоза говорит и тот факт, что высшая экономичность жизнедеятельности организмов обусловлена не стационарностью их жизнедеятельности, а частичным анабиозом подсистем, не исполняющих в те или иные моменты своих функций (пищеварительная, выделительная и т.п.). Все это свидетельствует о том, что анабиоз является фундаментальным и всеобщим свойством живого, зафиксированным уже в его исходных программах на молекулярном уровне.

Попытаемся подойти к решению проблемы биологического времени, основываясь на том факте, что управление процессами как на уровне биохимических реакций, так и на уровне целого организма, осуществляется сигналами (информацией). Реализация информации и ее темпы зависят от внешних условий. Это могут быть неблагоприятные температурные условия, замедляющие процесс развития или какие-либо иные, вводящие организм в полный анабиоз. Но, как отмечал еще Вл. Соловьев, не внешние условия, а именно наследственная информация является определяющим фактором, ибо из яйца птицы всегда вылупится птица того же вида. И во всех случаях количество информации в течение всего периода жизни клетки будет величиной одного порядка, независимо от времени между митозами. Это позволяет разукрупнить эту основную единицу клеточного времени на элементарные информационные единицы. Кроме того, такой подход позволяет ввести для исчисления внутреннего клеточного времени аппарат математической теории связи Шеннона (теории информации). Открывается также перспектива исчисления с помощью этого же аппарата внутреннего времени многоклеточных организмов за счет суммирования информации, управляющей работой отдельных клеток и отдельных органов, а также любых более крупных образований как эволюционного, так и биосферного плана. Практическое исчисление такого объема информации, начиная каждый раз с уровня биохимических реакций, может показаться нереальным. Однако и [9] показано, как можно осуществлять подобные вычисления, начиная с любого уровня иерархических структур организмов и автоматов при решении практических задач. Очевидно, что информационное представление внутреннего времени делает его исчисление независимым от внешнего - эталонного времени.

Информационные процессы обладают важнейшим свойством, собственно и являющимся необходимым отличительным признаком жизни. Они характеризуют ее способность к опережающему реагированию: специфические реакции организмов протекают не непосредственно в ответ на важное для их существования воздействие, а на опережающий их слабый энергетический признак - сигнал. Эти реакции меняют местами во времени причину и следствие. С момента получения информации (запаха, звука и т.п.) действия организма подчиняются цели (причине), расположенной в будущем (спасению от хищника, добыче пищи и т.д.). Эти действия становятся следствием этой будущей причины, хотя сама их последовательность подчиняется ординарным физическим закономерностям. Таким образом, момент получения информации является центром временной симметрии между физической и биологической причинностями. С появлением у высших организмов психики опережение событий становится существенно более дальним и надежным. Действительно, мысли и чувства направлены на воспоминание прошлого, анализ настоящего, но все это делается, как правило, для выбора целей в будущем и оптимального пути к ним. Здесь имеет место пересечение с утверждениями известного астрофизика Н.А. Козырева об одномоментном существовании прошлого, настоящего и будущего Вселенной. Однако такой вывод, как следует из современных представлений, требует, с одной стороны, одномоментного существования континуума Вселенных, каждая из которых соответствует очередному моменту ее жизни. С другой стороны, подобная реальность лишила бы человека свободы воли в силу жесткой предопределенности.

В связи с этим гораздо более приемлемым представляется существование программы эволюции Вселенной, допускающей корректировки хода событий, но не их цели. Косвенно в пользу такого предположения говорит наличие структурно обособленных программ, отличающих организмы от косной материи, начиная с уровня простейших. Сравнительно жесткие части программ, позволяющие организму делать выбор лишь из имеющегося выбора возможностей (т.е. те или иные фенотипические проявления, способности к усвоению того или иного вида пищи и т.п.) зафиксированы в ДНК и РНК. Но чем ближе на эволюционной лестнице организм к "образу и подобию", начиная со способности к выработке условных рефлексов, тем больше становится доля приобретенных программ, тем больше свобода воли и ответственности.

Оговорим для большей строгости изложения, что под программой понимается структура, способная под воздействием энергетического потока производить сигналы - информацию. Наиболее наглядным примером программ могут явиться текст или ландшафт, порождающие сигналы-информацию под воздействием светового потока. Из сказанного может быть сделан вывод, что весь процесс жизнедеятельности организма от рождения до смерти от старости определяется программами, создающими стрелу времени.

Согласование высших иерархических программ с низшими осуществляется посредством сигналов-информации, реализуя прямую и обратную связь во времени. Как это осуществляется в организме человека, подробно было проанализировано Н.А. Бернштейном [19].

Итак, существует лишь внутреннее время для всех систем, включая Вселенную. Внешнее время используется в качестве эталонного для сравнения процессов, протекающих в разных системах. Однородность времени в принципе может устанавливаться по равенству отрезков прямых, фиксирующих посредством приборов периодические процессы в разного рода часах, ибо сравнение длин отрезков прямых является приемом, доступным человеческим органам.

Существенным является вопрос о разной длительности информационных актов, как во внешнем, так и во внутреннем времени систем. Но именно благодаря этому и согласуются различные программы в общей программе эволюции Вселенной и процессы как внутри, так и вне систем. В организмах для этой цели существует множество часов-биоритмов, в геобиоценозах темп биологической эволюции согласуется с темпом геологической и т.п.

Итак, приведенный анализ позволяет, как представляется, сделать вывод: приложения синергетики к проблемам биологии дают лишь поверхностные аналогии. Во-первых, потому что совершенно неправомерно отождествлены два принципиально различных понятия: "упорядоченность" и "организация". Кристалл, например, упорядоченное амебы, а памятник - человека, которому он посвящен хотя бы в силу того, что из описания расположения их молекул исключается переменная - время. В отношении организации эти объекты находятся в обратной зависимости. Во-вторых, характер усиления слабых воздействий связан в живом с иными механизмами -сигнально-информационными, суть которых синергетика не вскрывает.


Литература

1. Пачсрлс Р.Е. Законы природы. М., 1958. С. 12.

2. Шредингер Э. Что такое жизнь. М., 1972. С. 75.

3. Фсйнмин Р. Характер физических законов. М., 1968. С. 120-121.

4. Пригпжин И. Переоткрытие времени // Вопросы философии. 1989. № 8.

5. Цит. по: Большаков Б.Е.. Минин В.Е. Взаимосвязь второго закона, принципов устойчивости неравновесия Бауэра-Вернадского и информации // Эрвпн Бауэр и теоретическая биология. Пущиио, 1993.

6. Путилон К.А. Термодинамика. М.. 1971. С. 52.

7. Кузнецоч Б.Г. К. истории применения термодинамики в биологии // Триигер К.С. Биология и информация. М., 1965.

8. Дкжрок А. Физика кибернетики // Кибернетика ожидаемая и кибернетика неожиданная. М., 1968.

9. Штсренберг М.И. Проблема Берталанфи и определение жизни // Вопросы философии. 1996. № 2.

10. Этби У.Р. Конструкция мозга. М.. 1962.

11. Рудснко А.П. Теория саморазвития открытых каталитических систем. М., 1969.

12. Цит. по: Ушаков Л. Жизнь, смерть и принцип рифмы // Химия и жизнь. 1994. № 2. \З.Ле.чшпчн К. Интервью с академиком С.С. Шварцем //Знание - сила. 1976. № 9.

14. Кузьмин М.В. Экстатическое время // Вопросы философии. 1996. № 2.

15. Вернадский В.И. Пространство и время в живой и неживой природе // Философские мысли натуралиста. М.. 1968. С. 210-296.

16. Мечен С.В. Понятие времени и типология объектов (на примере геологии и биологии) //Диалектика в науке о природе и человеке. М.,1983. С. 311-317.

17. Детлаф Т.А. Часы для изучения временных закономерностей развития животных// Конструкция времени в естествознании. М., 1996.

18. МеОникоч Б.Н. Молекулярные основы концепции биологического вида //Российский химический журнал. 1995. Т. 39. №2.

19. Беричпейн Н.А. Новые линии развития в биологии и их соотношение с кибернетикой // Вопросы философии. 1962. № 6.


ЧТО ТАКОЕ СИНЕРГЕТИКА?

Ю. А. ДАНИЛОВ, Б. Б. КАДОМЦЕВ

 (Взято из книги авторов "Нелинейные волны. Самоорганизация". М., Наука, 1983.)

Ненужность строгих определений.

Первая из знаменитых "Лекций по колебаниям" Л. И. Мандельштама [1, с.11] начинается словами: "Совсем не легко дать определение того, что составляет предмет теории колебаний". И далее: "Было бы бесплодным педантизмом стараться " точно" определить, какими именно процессами занимается теория колебаний. Важно не это. Важно выделить руководящие идеи, основные общие закономерности. В теории колебаний эти закономерности очень специфичны, очень своеобразны, и их нужно не просто "знать", а они должны войти в плоть и кровь" (с. 13).

Сказанное в полной мере относится и к X-науке, если под X понимать пока не установившееся название еще не сложившегося окончательно научного направления, занимающегося исследованием процессов самоорганизации и образования, поддержания и распада структур в системах самой различной природы (физических, химических, биологических и т. д.).

Что означает "синергетика"? Синергетика - лишь одно из возможных, но далеко не единственное значение X. Термин "синергетика" происходит от греческого "синергена" - содействие, сотрудничество. Предложенный Г. Хакеном, этот термин акцентирует внимание на согласованности взаимодействия частей при образовании структуры как единого целого. Большинство существующих ныне учебников, справочников и словарей обходят неологизм Хакена молчанием. Заглянув в энциклопедии последних изданий, мы с вероятностью, близкой к единице, обнаружим в них не синергетику, а "синергизм" (1.Совместное и однородное функционирование органов (например, мышц) и систем; 2. Комбинированное действие лекарственных веществ на организм, при котором суммарный эффект превышает действие, оказываемое каждым компонентом в отдельности). Фигура умолчания объясняется не только новизной термина "синергетика", но и тем, что X - наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы, еще далека от завершения и единой общепринятой терминологии (в том числе и единого названия всей теории) пока не существует. Бурные темпы развития новой области, переживающей период "штурма и натиска", не оставляют времени на унификацию понятий и приведение в стройную систему всей суммы накопленных фактов. Кроме того, исследования в новой области ввиду ее специфики ведутся силами и средствами многих современных наук, каждая из которых обладает свойственными ей методами и сложившейся терминологией.

Параллелизм и разнобой в терминологии и системах основных понятий в значительной мере обусловлены также различием в подходе и взглядах отдельных научных школ и направлений и в акцентировании ими различных аспектов сложного и многообразного процесса самоорганизации.

Синергетику Хакена легко описать: все, что о ней известно, содержится во множестве

Synergetics = {x1, x2, ... xn},

где xi - i-й том выпускаемой издательством Шпрингера серии по синергетике [2-8].

Множество это конечно, но число элементов в нем быстро возрастает.

Разработанная почти полвека назад, эта программа становится особенно актуальной в наши дни существенной "делинеаризации" всей науки. Без наглядных и емких физических образов, адекватных используемому аппарату, немыслимо построение общей теории структур, теории существенно нелинейной. Вооружая физика концентрированным опытом предшественников, эти образы позволяют ему преодолевать трудности, перед которыми заведомо мог бы спасовать исследователь, полагающийся только на свои силы. В этом отношении физические образы Л. И. Мандельштама представляют собой глубокую аналогию со структурным подходом Э. Нётер, научившей математиков за конкретными деталями задачи различать контуры общей схемы - математической структуры, задаваемой аксиоматически.

Суть структурного подхода, сформулированного Н. Бурбаки, звучит как парафраза мандельштамовской программы создания нелинейной культуры: "Структуры" являются орудиями математика; каждый раз, когда он замечает, что между элементами, изучаемыми им, имеют место отношения, удовлетворяющие аксиомам структуры определенного типа, он сразу может воспользоваться всем арсеналом общих теорем, относящихся к структурам этого типа, тогда как раньше он должен был бы мучительно выковывать сам средства, необходимые для того, чтобы штурмовать рассматриваемую проблему, причем их мощность зависела бы от его личного таланта, и они были бы отягчены часто излишне стеснительными предположениями, обусловленными особенностями изучаемой проблемы" [17].

Следуя Р. В. Хохлову, возникновение волн и структур, вызванное потерей устойчивости однородного равновесного состояния, иногда называют автоволновыми процессами (по аналогии с автоколебаниями) [15, 18]. На первый план здесь выступает волновой характер образования структур: независимость их характерных пространственных и временных размеров от начальных условий (выход на промежуточную асимптотику [19]), а в некоторых случаях - от краевых условий и геометрических размеров системы.

Синергетика и кибернетика.

Задачу выяснить с общих позиций закономерности процессов самоорганизации и образования структур ставит перед собой не только Х-наука. Важную роль в понимании многих существенных особенностей этих процессов сыграл, например, кибернетический подход, противопоставляемый иногда как абстрагирующийся "от конкретных материальных форм" и поэтому противопоставляемый синергетическому подходу, учитывающего физические основы спонтанного формирования структур.

В этой связи небезынтересно отметить, что создатели кибернетики и современной теории автоматов могут по праву считаться творцами или предтечами Х-науки. Так, Винер и Розенблют рассмотрели задачу о радиально несимметричном распределении концентрации в сфере [21]. А. Тьюринг в известной работе [22] предложил одну из основных базовых моделей структурообразования и морфогенеза, породившую огромную литературу: систему двух уравнений диффузии, дополненных членами, которые описывают реакции между "морфогенами". Тьюринг показал, что в такой реакционно-диффузионной системе может существовать неоднородное (периодическое в пространстве и стационарное во времени) распределение концентраций.

В русле тех же идей - изучения реакционно-диффузионных систем - мыслил найти решение проблемы самоорганизации и Дж. фон Нейман. По свидетельству А. Беркса, восстановившего по сохранившимся в архиве фон Неймана отрывочным записям структуру самовоспроизводящегося автомата, фон Нейман "предполагал построить непрерывную модель самовоспроизведения, основанную на нелинейных дифференциальных уравнениях в частных производных, описывающих диффузионные процессы в жидкости. В этой связи интересно отметить, что фон Нейман получил не только математическое образование, но и подготовку инженера-химика.

Структура и хаос.

Понятие структуры, основное для всех наук, занимающихся теми или иными аспектами процессов самоорганизации, при любой степени общности предполагает некую "жесткость" объекта - способность сохранять тождество самому себе при различных внешних и внутренних изменениях. Интуитивно понятие структуры противопоставляется понятию хаоса как состоянию, полностью лишенному всякой структуры. Однако, как показал более тщательный анализ, такое представление о хаосе столь же неверно, как представление о физическом вакууме в теории поля как о пустоте: хаос может быть различным, обладать разной степенью упорядоченности, разной структурой.

Одним из сенсационных открытии было обнаружение Лоренцом [2] сложного поведения сравнительно простой динамической системы из трех обыкновенных дифференциальных уравнений первого порядка с квадратичными нелинейностями. При определенных значениях параметров траектория системы вела себя столь запутанным образом, что внешний наблюдатель мог бы принять ее характеристики за случайные.

Природа странного аттрактора Лоренца была изучена совместными усилиями физиков и математиков. Как и в случае многих других моделей Х-теории, выяснилось, что система Лоренца описывает самые различные физические ситуации - от тепловой конвекции в атмосфере до взаимодействия бегущей электромагнитной волны с инверсно-заселенной двухуровневой средой (рабочим телом лазера), когда частота волны совпадает с частотой перехода [24]. Из экзотического объекта странный аттрактор Лоренца оказался довольно быстро низведенным до положения заурядных "нестранных" аттракторов - притягивающих особых точек и предельных циклов. От него стали уставать: легко ли обнаруживать странные аттракторы буквально на каждом шагу!

Но в запасе у странного аттрактора оказалась еще одна довольно необычная характеристика, оказавшаяся полезной при описании фигур и линий, обойденных некогда вниманием Евклида,- так называемая фрактальная размерность.

Фракталы.

Мандельброт [25] обратил внимание на то, что довольно широко распространенное мнение о том, будто размерность является внутренней характеристикой тела, поверхности, тела или кривой неверно (в действительности, размерность объекта зависит от наблюдателя, точнее от связи объекта с внешним миром).

Суть дела нетрудно уяснить из следующего наглядного примера. Представим себе, что мы рассматриваем клубок ниток. Если расстояние, отделяющее нас от клубка, достаточно велико, то клубок мы видим как точку, лишенную какой бы то ни было внутренней структуры, т. е. геометрический объект с евклидовой (интуитивно воспринимаемой) размерностью 0. Приблизив клубок на некоторое расстояние, мы будем видеть его как плоский диск, т. е. как геометрический объект размерности 2. Приблизившись к клубку еще на несколько шагов, мы увидим его в виде шарика, но не сможем различить отдельные нити - клубок станет геометрическим объектом размерности 3. При дальнейшем приближении к клубку мы увидим, что он состоит из нитей, т. е. евклидова размерность клубка станет равной 1. Наконец, если бы разрешающая способность наших глаз позволяла нам различать отдельные атомы, то, проникнув внутрь нити, мы увидели бы отдельные точки - клубок рассыпался бы на атомы, стал геометрическим объектом размерности.

Но если размерность зависит от конкретных условий, то ее можно выбирать по-разному. Математики накопили довольно большой запас различных определений размерности. Наиболее рациональный выбор определения размерности зависит от того, для чего мы хотим использовать это определение. (Ситуация с выбором размерности вполне аналогична ситуации с вопросом: "Сколько пальцев у меня на руках: 3 + 7 или 2 + 8?" До тех пор, пока мы не вздумали надеть перчатки, любой ответ можно считать одинаково правильным. Но стоит лишь натянуть перчатки, как ответ на вопрос становится однозначным: "5 + 5".)

Мандельброт предложил использовать в качестве меры "нерегулярности" (изрезанности, извилистости и т. п.) определение размерности, предложенное Безиковичем и Хаусдорфом.

Фрактал (неологизм Мандельброта [25]) - это геометрический объект с дробной размерностью Безиковича-Хаусдорфа. Странный аттрактор Лоренца - один из таких фракталов.

Размерность Безиковича-Хаусдорфа всегда не меньше евклидовой и совпадает с последней для регулярных геометрических объектов (для кривых, поверхностей и тел, изучаемых в современном учебнике евклидовой геометрии). Разность между размерностью Безиковича-Хаусдорфа и евклидовой - "избыток размерности" - может служить мерой отличия геометрических образов от регулярных. Например, плоская траектория броуновской частицы имеет размерность, но Безиковичу-Хаусдорфу 1. больше 1, но меньше 2: эта траектория уже не обычная гладкая кривая, но еще не плоская фигура.

Размерность

Безиковича-Хаусдорфа странного аттрактора Лоренца больше 2, но меньше 3: аттрактор Лоренца уже не гладкая поверхность, но еще не объемное тело.

О степени упорядоченности или неупорядоченности ("хаотичности") движения можно судить и по тому, насколько равномерно размазан спектр, нет ли в нем заметно выраженных максимумов и минимумов. Эта характеристика лежит в основе, так называемой топологической энтропии, служащей, как и ее статистический прототип, мерой хаотичности движений.

Существуют и другие характеристики, позволяющие судить об упорядоченности хаоса.

Структура структуры.

Как ни парадоксально, новое направление, столь успешно справляющееся с задачей наведения порядка в мире хаоса, существенно меньше преуспело в наведении порядка среди структур.

В частности, при поиске и классификации структур почти не используется понятие симметрии, играющее важную роль во многих разделах точного и описательного естествознания.

Так же как и размерность, симметрия существенно зависит от того, какие операции разрешается производить над объектом. Например, строение тела человека и животных обладает билатеральной симметрией, но операция перестановки правого и левого физически не осуществима. Следовательно, если ограничиться только физически выполнимыми операциями, то билатеральной симметрии не будет. Симметрия - свойство негрубое: небольшая вариация объекта, как правило, уничтожает весь запас присущей ему симметрии.

Если определение симметрии выбрано, то оно позволяет установить между изучаемыми объектами отношение эквивалентности. Все объекты подразделяются на непересекающиеся классы. Все объекты, принадлежащие одному и тому же классу, могут быть переведены друг в друга надлежаще выбранной операцией симметрии, в то время как объекты, принадлежащие различным классам, ни одной операцией симметрии друг в друга переведены быть не могут.

Симметрию следует искать не только в физическом пространстве, где разыгрывается процесс структурообразования, но и в любых пространствах, содержащих "портрет" системы.

В работе [26] предпринята попытка сформулировать требования симметрии, которым должна удовлетворять биологическая система. По мысли автора, "существо дела здесь состоит в эволюционном приспособлении биологических систем организмов к физическим и геометрическим характеристикам внешнего мира, в котором они себя "проявляют".

Биомеханика движений скелета, "константности" психологии восприятия, биохимические универсалии жизненных процессов, движения и потоки, связанные с морфогенезом,- все это реакции отдельных видов организмов на соответствующие инвариантности, свойственные геометрико-физико-химическим характеристикам внешней среды, которые организмы "сумели" идентифицировать и включить в свою филогению в процессе эволюции. Чем больше инвариантных, регулярных свойств своего внешнего мира смог распознать и "учесть" организм, тем больше хаоса удается ему устранить из внешней среды, что в койне концов обеспечивает его преимущества с точки зрения принятия решений, уменьшения фрустрации, доминирования и, по существу, выживания" [26, с. 183]. Классифицировать структуры можно и по степени их сложности. Однако и в этом направлении предприняты лишь первые шаги.

Аксиоматический подход.

Сложность поведения даже простых моделей (термин "элементарных" применительно к этим моделям так же, как и в случае элементарных частиц, отражает скорее уровень наших знаний о них, чем их истинную сложность) навела исследователей на мысль обратиться к аксиоматическому методу с тем, чтобы, следуя Гильберту, отделить существенные особенности модели от несущественных, случайных и тем самым облегчить построение моделей, воспроизводящих нужный режим поведения.

С. Улам [27] и другие авторы рассмотрели отображения плоскости на себя, производимые по определенным правилам (аксиомам). Наиболее эффектным оказалось отображение, предложенное Копуэем [28, 29],- его знаменитая игра "Жизнь".

Играют на плоскости, разбитой на квадратные клетки одного и того же размера. Каждая клетка может находиться в одном из двух состояний: либо быть занятой (например, фишкой), либо пустой. Начальное состояние (начальная расстановка фишек) может быть выбрана произвольно. Последующие состояния клеток зависят от занятости соседних клеток на предыдущем ходу. Соседними считаются восемь клеток, непосредственно примыкающих к данной (имеющих с ней либо общую сторону - примыкание справа, слева, сверху и снизу, либо общую вершину - примыкание по диагонали). Игра состоит из дискретной последовательности ходов. На каждом ходу ко всем клеткам доски применяются следующие три правила (аксиомы).

I. Выживание. Клетка остается занятой на следующем ходу, если на предыдущем были заняты две, или три соседние с ней клетки.

2. Гибель. Клетка становится свободной на следующем ходу, если на предыдущем было занято более трех или менее двух соседних клеток (в первом случае клетка "погибает" из-за перенаселения, во втором - из- за чрезмерной изоляции).

3. Рождение. Свободная клетка становится занятой на следующем ходу, если на предыдущем были заняты три и только три соседние клетки.

Кажущаяся простота правил Конуэя обманчива: как и простые динамические системы, доска с расставленными на ней фишками может перейти в весьма сложные режимы, имитирующие процессы гибели (полное уничтожение всех расставленных в начальной позиции фишек), неограниченный рост, устойчивое стационарное состояние (система с определенной периодичностью в пространстве), периодические по времени осцилляции.

Подробный обзор современного состояния кибернетического моделирования биологии развития приведен в [301].

Поиски универсальной модели.

Сложность поведения простых моделей и неисчерпаемое разнообразие моделируемых объектов наводят на мысль о поиске некоего универсального класса моделей, которые могли бы воспроизводить требуемый тип поведения любой системы.

Рассмотрим, например, систему уравнений химической кинетики, описывающую редкую ситуацию: досконально известный механизм m-стадийной реакции (m - число элементарных актов), в которой принимает участие п веществ. Алгоритм выписывания динамической системы по схеме реакции однозначно определен [31]. В таких системах "химического типа" удалось установить существование довольно сложных режимов (например, каталитический триггер или каталитический осциллятор). В то же время известно, что далеко не всякую динамическую систему с полиномиальной правой частью можно интерпретировать как описывающую некую гипотетическую химическую реакцию: некоторые концентрации в случае произвольно заданной системы могут становиться отрицательными.

Возникает вопрос: всякую ли динамическую систему с полиномиальной правой частью можно промоделировать системой типа химической кинетики? Ответ (положительный) был получен М. Д. Корзухиным [18], доказавшим теорему об асимптотической воспроизводимости любого режима, осуществимого в системах с полиномиальной правой частью, системами типа химической кинетики (быть может, с большим числом "резервуарных" переменных, концентрации которых в ходе реакции считаются неизменными).

Вместо заключения. Мы умышленно не остановились в лекции ни на "универмаге моделей", ни на перечислении существующих методов решения уравнений и задач определенных типов, считая, что и то и другое слушатели сумеют почерпнуть из других лекций. Свою задачу мы видели в том, чтобы, не впадая в излишний педантизм, очертить контуры возникающего нового направления, обратить внимание на основные идеи и понятия.

Свою лекцию мы бы хотели закончить словами Л. И. Мандельштама: "В сложной области нелинейных колебаний еще в большей мере, чем это уже имеет место сейчас, выкристаллизуются свои специфические общие понятия, положения и методы, которые войдут в обиход физика, сделаются привычными и наглядными, позволят ему разбираться в сложной совокупности явлений и дадут мощное эвристическое оружие для новых исследований.

Физик, интересующийся современными проблемами колебаний, должен, по моему мнению, уже теперь участвовать в продвижении по этому пути. Он должен овладеть уже существующими математическими методами и приемами, лежащими в основе этих проблем, и научиться их применять" [32].


ЛИТЕРАТУРА

1. Манделъштам Л. И. Лекции по колебаниям. М.: Изд-во АН СССР, 1955. 503 с.

2. Хакен Г. Синергетика. М.: Мир, 1980. Wi с.

3. Synergetics. А Workshop / Ed. by И. Hakell. 3rd ел. В. etc,, 1977. 277р.

4. Synergetics far from equilibrium/Ed. by A. Pacault, С. Vidal. В. etc,, 1978.

5. structural stability in physics/ Ed. by W. Guttinger, H.Eikenmeier. В. etс., 1978.

6. Pattern formation by dynamic systems and pattern recognition / Ed. bv H. Haken B.etc. 1979. 305p.

7. Dynamic of synergetic systems/ Ed. by H. Haken. В. etc., 1980. 271 p.

8. Choaos and order in nature /Ed. by H.Haken. B. etc. 1980. 271 p.

9. Словарь no кибернетике. Киев: Гл. ред. Укр. сов. энцикл., 1979. 621 с.

10. Улам С. Нерешенные математические задачи. М.: Наука, 1964. 161с.

11. Nonlinear partial differential equations. N. Y.: Acad. press, 1967, p. 223.

12. Николае Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979. 512 с.

13. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973. 280 с.

14. Гапонов-Грехов А. В., Рабинович М. И. Л. И. Мандельштам и современная теория нелинейных колебаний и волн.- УФН, 1979, 128, № 4, с. 579-624.

15. Васильев В.А., Романовской Ю. М., Яхт В. Г. Автоволновые процессы в распределенных кинетических системах.- УФН, 1979, 128, № 4, с. 625-666.

16. Академик Л. И. Мандельштам: К 100-летию со дня рождения.- М.: Наука, 1979, с. 107.

17. Бурбаки Н. Архитектура математики.- В кн.: Математическое просвещение. М.: Физ-матгиз, 1959, вып. 5, с. 106-107.

18. Жаботинский А. М. Концентрационные автоколебания. М.: Наука, 1974. 178 с.

19. Баренблатт Г. И. Подобие, автомодельность и промездуточная асимптотика. Л.: Гидрометеоиздат, 1978. 207 с.

20. Эбелинг В. Образование структур при необратимых процессах. М.: Мир, 1979, с. 13-14.

21. Романовский Ю. М., Степанова Н. В., Чернавский Ц. С. Математическое моделирование в биологии. М.: Наука, 1975. 343 с.

22. Turing А. М. The chemical basis of morphogenesis- Phil. Trans. Roy. Soc. London В, 1952, 237, p. 37-72.

23. Нейман Дж. фон. Теория самовоспроизводящихся автоматов. М.: Мир, 1971. 382 с.

24. Рабинович М. И. Стохастические автоколебания и турбулентность.- УФК, 1978, 125, №1, с. 123-168.

25. Mandelbrot В. В. Fractals. San Francisco: W. Н. Freeman and Co. , 1977. 365 p.

26. Хоффман У. Система аксиом математической биологии.- В кн.: Кибернетический сборник. М.: Мир, 1975, вып. 12, с. 184-207.

27. Математические проблемы в биологии: Сб. статей. М.: Мир, 1962, с. 258.

28. Гарднер М. Математические досуги. М.: Мир, 1972, с. 458.

29. Эйген М., Винклер Р. Игра жизнь. М.: Наука, 1979, с. 53.

30. Аладъев В. 3. Кибернетическое моделирование биологии развития.- В кн.: Параллельная обработка информации и параллельные алгоритмы. Таллин: Валгус, 1981, с.211-280.

31. Вольперт А. .0., Худяев С. И. Анализ в классе разрывных функций и уравнения математической физики. М.: Наука, 1975. 394 с.

32. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний: Предисловие к первому изданию. М.: Физматгиз, 1959, с. 11-12.


СИНЕРГЕТИКА И ПРОБЛЕМЫ УПРАВЛЕНИЯ В ТЕХНИКЕ,

ЭКОНОМИКЕ И СОЦИОЛОГИИ

Гуманитарная страница Анатолия Пинского

Научный коллектив кафедры систем автоматического управления ТРТУ под руководством профессора А.А.Колесникова проводит исследования в области синергетических систем управления. Развит принципиально новый подход к синтезу систем управления нелинейными многосвязными объектами, основанный на концепции введения притягивающих (инвариантных) многообразий-аттракторов.

На основе синергетического подхода осуществлен прорыв в трудной проблеме синтеза систем управления широким классом нелинейных многомерных объектов, что позволило впервые разработать общую теорию и методы аналитического конструирования систем скалярного, векторного, разрывного, селективно-инвариантного, многокритериального и терминального управлений нелинейными динамическими объектами различной физической природы, в том числе и с учетом ограничений на координаты и управления.

Теория и методы синтеза синергетических систем были использованы для решения крупных прикладных задач управления, в том числе:

- впервые в мировой энергетике решена известная своей сложностью проблема синтеза многосвязных систем согласованного управления электромеханическими процессами в турбогенераторах, которые принципиально превосходят существующие системы и обладают предельными свойствами;

- разработан новый метод синтеза систем векторного управления общим классом манипуляционных роботов по их полным нелинейным моделям движения.

Аналогичные результаты получены также в задачах управления нелинейными электроприводами, движущимися объектами и др.

"Информационный джинн", стремительно ворвавшись в современное общество, резко снизил "время полураспада знаний". Это непосредственно касается и сферы образования и, конечно, концепции ее информатизации.

С 1993 года прошло немногим более четырех лет, а уже остро ощущается необходимость актуализации концепций системной интеграции информационных технологий в высшей школе (редакция 1993 года), информатизации высшего образования Российской Федерации (утверждена 28 сентября 1993 года) и развита сети телекоммуникаций в системе высшего образования Российской Федерации (утверждена 31 марта 1994 года).

Работа по актуализации этих концепций выполнена в Государственном научно-исследовательском институте системной интеграции совместно с вузами и другими организациями по поручению Министерства общего и профессионального образования Российской Федерации. Разработана единая концепция информатизации общего профессионального образования. В настоящей публикации редакция этой единой концепции приводится в изложении.

1. Цели, задачи и основные направления информатизации сферы образования России. Сегодня перед Россией стоит проблема переосмысления национальной хозяйственной деятельности, а главное изменений, которые в ней возможны и мыслимы. На все пространство ныне существующей экономической деятельности необходимо должным образом наложить пространство идей. Решение этой проблемы по плечу только населению, имеющему высокий образовательный уровень, соответствующий современным требованиям.

Общество объективно живет в режиме развития, подчиняется законам развития. Идея развития - это идея энергичная, перспективная, беспроигрышная. Для России эта идея сама по себе имеет преимущество, и она мобилизует все прочие преимущества, все еще имеющиеся у страны, в том числе потенциал образования.

В Концепции информатизации высшего образования Российской Федерации (1993 г.) было объявлено, что стратегическая цель информатизации образования состоит в глобальной рационализации интеллектуальной деятельности за счет использования НИТ, радикальном повышении эффективности и качества подготовки специалистов до уровня, достигнутого в развитых странах, т.е. подготовки кадров с новым типом мышления, соответствующим требованиям постиндустриального общества.

В результате достижения этой цели в обществе должны быть обеспечены массовая компьютерная грамотность и формирование новой информационной культуры мышления путем индивидуализации образования.

Эта цель информатизации образования по своей сути является долгосрочной и потому продолжает сохранять свою актуальность.

Глобальная цель информатизации сферы образования является многофакторной, включающей в себя целый ряд целей и подцелей.

Сегодня главная цель информатизации состоит в подготовке обучаемых к полноценному и эффективному участию в бытовой, общественной и профессиональной областях жизнедеятельности в условиях информационного общества. Кроме главной цели путем информатизации образования необходимо обеспечить достижение следующих подцелей:

 повышение качества образования;

увеличение степени доступности образования;

повышение экономического потенциала в стране за счет роста образованности населения (человеческий капитал);

интеграция национальной системы образования в научную, производственную, социально-общественную и культурную информационную инфраструктуру мирового сообщества.

Стратегическими задачи развития информатизации образования являются следующие:

Подготовка кадров, способных осуществить решение поставленной масштабной цели повышения качества образования с использованием перспективных информационных технологий.

Анализ уровней целесообразного применения информационных технологий для различных направлений и ступеней подготовки специалистов. Научное обоснование методологии информатизации общего и профессионального образования.

Научное обоснование методологии информатизации специализированного образования в области информатики и вычислительной техники. Методологические проблемы разработки и оптимального применения новых информационных технологий в сфере образования.

Разработка новых принципов и методов представления, обработки данных и знаний.

Разработка компьютерных обучающих систем.

Создание системы стандартизации информационных технологий, разработка методик сертификации программных и технических образовательных средств.

Разработка конструктивных подходов и организационных форм создания товарного методического компьютерного обеспечения образовательного процесса.

Создание единого телекоммуникационного сетевого пространства сферы образования.

Развитие единой системы баз данных и информационных ресурсов в сфере образования.

Обеспечение массового доступа к единой системе баз данных и информационных ресурсов сферы образования России для всех групп пользователей.

Внедрение информационных технологий в сферу образования имеет смысл, если это позволяет создать дополнительные возможности и организационно-технические ресурсы, а именно:

(1) доступ к большому объему учебной информации;

(2) образная наглядная форма представления изучаемого материала;

(3) поддержка активных методов обучения;

(4) модульный принцип построения, что позволяет тиражировать отдельные составные части информационной технологии;

(5) поддержка информационной технологии соответствующим научно-методическим материалом.

Основными направлениями развития информатизации национальной системы образования должны являться:

Информатизация процессов обучения в общем и профессиональном образовании.

Получение обучаемыми необходимого, определенного государственными образовательными стандартами уровня знаний, умений и навыков в области общей и профессиональной "информационной культуры".

Создание информационной инфраструктуры сферы образования.

Информатизация процессов управления образованием.

Информатизация научных исследований и разработок, которые проводятся в национальной системе образования.

Оснащение сферы образования современными информационно-вычислительными средствами и телекоммуникационной техникой.

Создание и развитие современной системы дистанционного образования.

Для научного обоснования методов и средств проведения работ по информатизации сферы образования должны быть в опережающем порядке проведены исследования по следующим направлениям:

1.Разработка методов моделирования и концептуального проектирования процессов информатизации образования.

2.Содержание и методология преподавания знаний, умений и навыков по информационным технологиям общего назначения (информатика) от начального до послевузовского образования и обеспечения преемственности в развитии знаний, умений и навыков на всех этапах непрерывного образования.

3.Анализ и обоснование целесообразности и пропорций использования ИТ и традиционных методов в обучении по всему образовательному циклу от начального до послевузовского.

4.Исследование проблем обеспечения всех видов безопасности обучаемых в условиях использования ИТ и компьютерной техники.

5.Методология создания автоматизированных систем обучения (АСО) и их компонент (автоматизированные учебники, курсы, практикумы и т.д.).

6.Анализ и обоснование содержания и структуры АСО в различных видах профессионального образования (гуманитарного, технического и др.).

7.Создание методик преподавания в условиях применения АСО.

8.Методология контроля качества обучения с использованием ИТ по всему образовательному циклу и во время профессиональной переподготовки специалистов.

9.Анализ и обоснование целесообразного соотношения профессионального обучения в реальных и моделируемых с использованием ИТ профессиональных средах.

10.Исследования в области перспективных базовых ИТ - программно-технических, телекоммуникационных, мультимедийных и т.д.

Пo результатам выполнения НИР по всем приведенным направлениям после авторитетной экспертизы должны вырабатываться нормативные и/или рекомендательные документы Минобразования России.


Информация о работе «Синергетика: различные взгляды»
Раздел: Философия
Количество знаков с пробелами: 413442
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
41569
0
0

... перспективным направлением исследования социальных процессов и занимает достойное место в области социального мышления. Список использованных источников 1. Аршинов В.И. Синергетика как феномен постнеклассической науки / В.И. Аршинов. - М: ИФРАН, 1999. – 203 с. 2. Бевзенко Л. Социальная самоорганизация. Синергетическая парадигма: возможности социальных интерпретаций / Л. Бевзенко. — Киев., ...

Скачать
56536
0
0

... экспериментальной проверке. Тем не менее, такой подход вполне правомерен. Он может служить иллюстрацией высказанного выше положения о том, что идеи синергетики намечают и новые подходы к изучению деятельности мозга. В пользу правомерности именно такого подхода может свидетельствовать и другой интересный феномен, получивший название «диссоциированного обучения». Суть этого феномена состоит в том, ...

Скачать
54288
0
0

... , результат такого скачка- новое состояние биосферы- в значительной мере оказывался случайным. Так что и в анализе биотехнологий есть большие перспективы для применения методов синергетики, для системного синтеза. Вторую сверхзадачу можно условно назвать проблемой альтернативной истории и стратегического планирования. Читая историков Французской революции или мемуары политиков начала века, ...

Скачать
42528
0
0

... отклонится от стремления к определению именно синергетики и констатировать то, чем реально занимаются специалисты в связи с исследованиями по синергетике. В связи с этим предлагается следующее определение: Синергетическая концепция самоорганизации 1. Объектами исследования являются открытые системы в неравновесном состоянии, характеризуемые интенсивным (потоковым, множественно–дискретным) ...

0 комментариев


Наверх