Зміст

Вступ.

1.  Явище люмінесценції. Загальний опис.

2.  Історія розвитку люмінесцентного аналізу.

3.  Прилади для люмінесцентного аналізу.

4.  Види люмінесцентного аналізу. Кількісний та якісний аналіз.

Висновки.

Література.


Вступ.

Вивчення та дослідження нових матеріалів, діагностика в медицині, криміналістичні дослідження. Перелік таких галузей можна продовжити, але всі вони вимагають методів дослідження, які б були достатньо швидкі, в ідеальному випадку – експрес-методи та не пошкоджували самі об’єкти дослідження, були достатньо чутливі та не вимагали складної апаратури.

Одним із таких фізичних методів дослідження є метод люмінесцентного аналізу.

Серед видів люмінесцентного аналізу виділяють методи кількісного аналізу, якісного аналізу та люмінесцентну мікроскопію.

Методи люмінесцентного аналізу у наш час знайшли застосування під проведення досліджень промислових товарів, у медицині, у криміналістичному аналізі та в дефектоскопії.

Розглянемо дані методи більш докладно.


1. Явище люмінесценції. Загальний опис.

Люмінесценція – особливий вид світіння речовин без підвищення температури – відома ще з глибокої старовини. Однак пройшло багато століть, перш ніж людині вдалось цілком розкрити її природу.

Наукову розробку цього питання починають В. В. Петров, Стоці, Беккерель.

Термін "люмінесценція" і класифікацію типів світіння вперше запропонував німецький фізик Відеманн. Однак його визначення було неповним.

Під час фотолюмінісценції частка починає інтенсивно світитися в результаті захоплення квантів активуючого світла. Причому, повертаючись до вихідного стану, вона віддає отриману енергію у виді світла, довжина хвилі якого більша довжини хвилі джерела збудження.

Отже, люмінесценцією називають світіння атомів чи молекул, яке виникає в результаті електронного переходу в частинках речовини при їх переході із збудженого стану в не збуджений.

Класифікують явища люмінесценції за часом та методом збудження. За часом післясвітіння розрізняють два типи люмінесценції – флуоресценцію – світіння яке миттєво зникає після припинення дії джерела збудження і фосфоресценцію, світіння, продовжується певний проміжок часу.

В залежності від методу збудження розрізняють фотолюмінесценцію – свічення, яке виникає при поглинанні світлової енергії; катодолюмінесценцію – основану на свіченні речовин при поглинанні катодних променів (електронів) та хемілюмінесценцію – свічення, яке виникає при протіканні хімічних реакцій.

Всі люмінесціюючі речовини мають загальну назву – люмінофори. У найпростішому вигляді процес, збудження і свічення можна зобрази­ти схемою, наведеною на рис. 1, з якого видно, що енергія вип­ромінювання молекули завжди менша від енергії збудження.

 

Де Н – нормальний стан молекули із станами 0,1, 2, 3, 4, З – збуджений стан молекули із станами 0,1, 2, 3, 4.

Рис. 1. Збуджений та нормальний стани молекули та переходи між ними в процесі люмінесценції.

На основі цього було встановлено, що спектр люмінесценції зміщений відносно спектру поглинання в сторону довших хвиль (закон Стокса-Ломмеля). Доведено також дзеркальну подібність спектрів поглинання і спектрів випромінювання люмінесценції для складних молекул. Дзер­кальна симетрія спектрів родаміну в ацетоні наведена на рис. 2.

Рис. 2. Дзеркальна симетрія спектрів родаміну в ацетоні.

1 – спектр поглинання, 2 – спектр випромінювання.

Різницю між максимумом спектру поглинання і максимумом люмінес­ценції Х називають стоковим зміщенням. Чим більша величина стоксового зміщення для даної люмінесціюючої речовини, тим вища чутливість визначуваної речовини люмінесцентним методом.

Повнота перетворення енергії збудження при люмінесценції харак­теризується енергетичним виходом Ве, який являв собою відношення випромінюваної енергії люмінесценції Ел до поглинутої енергії збудження Ев.

Ве= Ел / Ев.

Повноту перетворення енергії можна охарактеризувати також величиною квантового виходу люмінесценції Вк, який дорівнює відношенню числа випромінюваних квантів при люмінесценції Nл до числа поглинутих квантів Nв при збудженні:

 Вк= Nл / Nв.

Оскільки енергія кванта оптичного випромінювання рівна: Е = hν, то зв'язок між енергетичним та квантовим виходом люмінесценції можна виразити виразом:

Ве= Ел / Ев = Вкв/ λл)

Енергетичний вихід люмінесціюючого випромінювання залежить від довжини хвилі збудженого світла (закон Вавилова). Графічно ця за­лежність показана на рис. 3.

На ділянці 1 кривої величи­на енергетичного виходу росте пропорційно довжині хвилі збу­дженого світла; далі в ділян­ці накладання спектрів погли­нання

і випромінювання відбу­вається різке падіння виходу (ділянка ІІ).

Рис. 3. Залежність виходу випромінювання від довжини хвилі збуджучого світла.

Для ділянки кривої 1 можна записати: Ве= аλв, де а - коефіцієнт пропорційності.

Але оскільки Ве= Ел / Ев = Вкв/ λл), то, об'єднавши два рівняння і знаючи, що речовина при люмінесценції випромінює світло певної дов­жини хвилі, одержимо вираз:

Вк = аλк = const,

з якого випливав, що квантовий вихід люмінесценції залишається сталим на ділянці 1 наведеної кривої при збільшенні довжини хвилі збудженого світла до 500 – 600 нм. Саме ділянку спектру 1 (від 100 до 600 нм) використовують для кількісного визначення речовин. На практиці для проведення люмінесцентного аналізу багатьох речовин використовують ультрафіолетові промені світла з більшою енергією кванту, які одержують в основному за допомогою ртутних ламп.

2. Історія розвитку люмінесцентного аналізу.

Історія люмінесцентного аналізу пов'язана з розвитком навчання про люмінесценцію взагалі.

Початок розвитку цього методу відноситься до глибокої старовини. Віками люди спостерігали за світінням у темряві гнилого дерева, комах, однак природа цього явища тривалий час залишалася нерозкритої. Рукописні зведення про люмінесценцію починаються з Каскаріоло, що у 1604 р. синтезував першу штучну речовину здатну до люмінесценції (болонский фосфор).

Пізніше алхіміки відкрили цілий ряд мінералів, що світяться в темряві. Досвід обмежувався якісними спостереженнями і складанням хімічних рецептів фосфорів.

Перший крок у дослідженні люмінесценції зробив російський академік В. В. Петров. Він вивчав біологічну тканину (гниюче м'ясо, рибу та ін.) і підійшов до проблеми світіння винятково з хімічної точки зору. На підставі цих дослідів В.В. Петрову вдалося відокремити хемілюмінесценцію від фотолюмінісценції.

Гершель у 1800 р. відкрив інфрачервоні промені. Це навело на думку про те, що до фіолетової частини спектра примикає область невидимих променів, що незабаром були виділені і названі ультрафіолетовими. В.В.Петров у 1802 р. винайшов дугову лампу, що являлася могутнім джерелом ультрафіолетових променів. Наприкінці XІХ ст. з'являються перші дисертаційні роботи з застосування люмінесцентного аналізу, що стосуються вивчення біологічних об'єктів.

У 1903 р. Вуд запропонував виділяти потрібний для люмінесценції спектр променів, використовуючи для цього спеціальний фільтр. Користуючись цим фільтром, автор вивчав флуоресценцію шкіри, волосся, зубів. У 1918 р. він описав флуоресценцію кришталика ока людини.

Справжнім поштовхом до практичного застосування люмінесцентного аналізу в медицині і біології варто вважати введення в методику дослідження скляних фільтрів, поява кварцових ламп, а згодом і винахід зручної аналітичної лампи. Перший патент на ртутну лампу низького тиску отриманий російським професором Рєп’євим. У 1925 р. фірма "Hanay" використовувала чорне скло в аналітичній кварцовій лампі. Вітчизняна промисловість випустила кольорові скельця марки УФС, призначені для виділення ультрафіолетового випромінювання.

Із створенням компактної апаратури різко збільшилося число робіт з люмінесцентного аналізу в біології і медицині. Метод виявився особливо коштовним у тих випадках, коли характер завдань, що вирішуються, вимагав використовувати специфічні переваги люмінесцентного аналізу й у першу чергу його велику чутливість.

З 20-х років ХХ ст. посилено розвивається наукове вивчення власного світіння (первинної люмінесценції) біологічних тканин.

У цей період дослідники користалися найбільш простим і легко доступним прийомом – безпосереднім спостереженням люмінесценції досліджуваного об'єкту.

Оскільки теоретичні уявлення про люмінесценцію ще тільки формувались, те і розвиток люмінесцентного аналізу в хірургії йшло в основному методом експериментів. У цей період широко вивчається власне світіння тканин і органів, вилучених при операції. Відкрите положення і доступність зовнішніх покривів дозволили досліджувати патологічні процеси, що локалізуються в шкірі.

Успіх сучасного люмінесцентного дослідження значною мірою пов'язаний із застосуванням флуоресцеїну, а ефективність люмінесцентного дослідження – з можливістю створення достатньої концентрації флуорохрому в ураженій тканині. Останнє ж залежить від способів уведення флуорохрому, тому що кожний з них у неоднаковому ступені забезпечує досягнення необхідної концентрації препарату у вогнищі ураження й у крові.

Метод з успіхом застосовується в нейрохірургії: у діагностиці запальних процесів головного мозку і мозкових оболонок. Г.М. Локтіонов, а також закордонні вчені використовували прижиттєве флуорохромірування для виявлення пухлин мозку під час операції. Г.Д. Князєва й ін. вивчали стан гемато-энцефалічного бар'єру при повітряній емболії мозку під час операції на серце, використовуючи флуоресцентний індикатор. Хофман і ін. повідомили про механізм проникнення флуоресцеїну через гемато-энцефалічний бар'єр.

Серед інших досліджень заслуженим успіхом стала користуватися люмінесцентна мікроскопія, що відноситься до більш тонких методів вивчення структури, біофізико-хімічного і функціонального стану клітки.

Люмінесцентний метод дозволяє виявляти кислі мукополісахариди і різні компоненти тканин, зокрема альдегіди і кетони, глікоген, жир, кальцій.

Люмінесцентний аналіз набув широкого застосування в санітарії і гігієні, судовій медицині, а також у фармакології.

3. Прилади для люмінесцентного аналізу.

Апаратура для люмінесцентних досліджень повинна бути портативною, зручною, повинна забезпечувати проведення діагностичних спостережень у будь-яких умовах, мати оптико-світлотехнічну систему для концентрації випромінювання на визначену ділянку.

Основними вузлами апарату­ри для люмінесцентного аналізу є освітлювач із світлофільтрами, кю­вети, діафрагми і пристрій для вимірювання інтенсивності свічення. Освітлювачем для люмінесцентного аналізу, як правило, використову­ють ртутні лампи. Приймачем виступає фотоелемент або фото помножувач. Принципова схема лабораторного флуориметра ЄФ-ЗМ, призначеного для кількісного аналізу вітамінів та інших люмінесціюючих речовин, показана на рис. 4.

1.  кварцова лампа;

2.  діафрагма;

3.  заслінка;

4.  фільтр;

5.  кварцова оптика;

6.  посудина з досліджуваним розчином;

7.  кварцова оптика;

8.  світлофільтри;

9.  фотоелементи.

Рис. 4. Схема лабораторного флуориметра ЄФ-3М.

Світло від кварцової лампи 1, проходячи через діафрагму 2, світлофільтр 4 і кварцову оптику 5, потрапляє на посудину з досліджува­ним розчином. Люмінесцентне свічення досліджуваного розчину прохо­дить через кварцову оптику 7, вторинні світлофільтри 8, потрапляє на фотоелемент 9. Фотоелемент, перетворюючи світлову енергію в еле­ктричну, подає її на електронний підсилювач, в анодний ланцюг якого підключений мікроамперметр. Покази мікроамперметра прямо пропорцій­ні концентрації люмінесціюючої речовини

Метод люмінесцентного аналізу в медицині став більш успішно розроблятися з розвитком вивчення вторинної люмінесценції. Остання представляє світіння, що виникає після зафарбування тканин спеціальними барвниками – фото люмінофорами. Органічні фотолюмінофори, що випромінюють під дією ультрафіолетових чи променів видимої частини спектра, часто називають флуоресцентними барвниками, чи флуорохромами.

Розглядаючи численні роботи з люмінесцентного аналізу в медицині, прийшли до висновку, що основним і самим коштовної флуорохромом є флуоресцеїн. Флуоресцеїн (диоксифлуоран) (C20H12O5) – органічну сполуку, барвник групи трифенілметанових, червоний кристалічний порошок, розчиняється в спирті, ефірі і водяних лугах. Назва "флуоресцеїн" дано сполуці тому, що в лужних розчинах він має сильну флуоресценцію (у концентраціях до 1 : 2000000).

Отримують флуоресцеїн при нагріванні фталевого ангідриду з резорцином. У лужному середовищі оптимальна концентрація його 0,8 г/л, колір флуоресценції жовто-зелений, відносна яскравість 0,26 нт.

Флуоресцеїн майже нерозчинний у воді, тому для парентерального введення цього препарату застосовують його натрієву сіль. Флуоресцеїн – один з найбільше яскраво світних флуорохромів.

Енергетичний вихід світіння при кімнатній температурі у флуоресцеина досягає 70-71%.

Препарат не токсичний і усебічно вивчений експериментаторами і клініцистами.

Він допущений для застосування в клініці Міжнародною фармакопеєю, фармацевтами США, Великобританії й інших країн.

Однак, даючи повну й об'єктивну характеристику препарату, слід зазначити, що він має побічні ефекти, що часом небажані і вимагають своєчасного усунення.

Нудота і рвота – найбільш часті ускладнення, що виникають при люмінесцентному дослідженні з флуоресцеїном, особливо при внутрішньовенному і внутріартеріальному введенні препарату.

Однак вони легко знімаються зменшенням дози препарату, уповільненням швидкості введення його в судинне русло.


Информация о работе «Явище люмінесценції»
Раздел: Физика
Количество знаков с пробелами: 19953
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
158702
2
1

... у провадженні судових експертиз та попередніх досліджень за завданнями слідчого або органу дізнання. Крім того, техніко-криміналістичні засоби та методи в залежності від мети поділяють на такі, які використовуються для: —  збирання речових доказів (виявлення, фіксація, вилучення та упаковка); —  дослідження доказів; —  профілактики. Іноді у межах зазначеної класифікації виділяють і засоби та ...

Скачать
93000
3
0

... і випадків зміна кінематичної схеми викликало ускладнення як самої схеми, так і конструкції машини. Отримуваний невеликий техніко-економічний ефект не оправдовував ускладнення конструкції і подорожання ремонту. Не оправдавши себе конструкції дробарок, не дивлячись на значне поширення (наприклад, дробарки типу «Додж» і дробарки з кулачковим механізмом), постійно витіснялись більш раціональними ...

Скачать
89179
3
11

... експериментально довели, що розсіяний рентгенівський фотон і електрон віддачі з'являються одночасно. Розділ 2 Вивчення фундаментальних дослідів з квантової оптики в профільних класах   2.1 Досліди, що послужили основою виникнення хвильової теорії світла   Оптика є, ймовірно, тим розділом фізики, в якому вперше були проведені вимірювання. В III ст. до н.е. Евклід вже знав закони видбивання ...

Скачать
24902
0
0

... страждань. До методів судово-оперативної фотографії належать панорамний, вимірювальний, широкомасштабний, сигналетичний, репродукційний, макроскопічний і стереоскопічний. Зазначимо, що методи судової фотографії не слід ототожнювати з видами судової зйомки, до якої належать орієнтувальна, оглядова, вузлова та детальна. Метод — це спосіб зйомки, а вид — реалізація її мети. Наприклад, оглядову ...

0 комментариев


Наверх