Уравнение Шрёдингера для простейших стационарных движений

Одномерный "потенциальный ящик" и последовательный квантово-механический анализ свойств стационарной системы удобно проследить на примере простейшего поступательного движения на ограниченном интервале. Волновые функции одной частицы называют орбиталями. Решение уравнения Шрёдингера превращаются в орбитали только после подчинения их условиям регулярности, предъявляемым к волновым функциям, а также после обязательной нормировки. Правило квантования энергии (энергетический спектр) вытекает из последовательного наложения граничных условий на решения уравнения Шрёдингера. Энергетический спектр не отличается от полученного для простой модели линейно ограниченной волны Де-Бройля. Энергетическую диаграмму и графики волновых функций рекомендуется построить в качестве упражнения. Число пучностей у каждой орбитали равно её квантовому числу - номеру энергетического уровня.

Модель "потенциального ящика" обнаруживает количественную эффективность в нескольких очень важных случаях, а именно: 1) в расчётах электронных спектров полиенов, 2) при расчёте уровня Ферми в кристаллах, 3) в расчёте поступательной статистической суммы газа, 4) в теории сдвига электронного сродства в гомологических рядах квазилинейных диарилперфторполиеновых цепей.

Имеются и иные важные её приложения.

Волновые функции разных состояний «ящика» ортогональны:

.

В этом легко убедиться, прибегая к формуле

.

Свойство ортогональности волновых функций разных состояний общее для любых систем.

Энергетическая диаграмма волновых функций:

Одно из стандартных приложений данных расчёта к химическим и физическим явлениям часто оформляют в виде энергетической диаграммы. На такой диаграмме энергетические уровни располагаются вдоль одной из координатных осей – чаще всего вдоль ординаты. На ней наглядно представлено (в масштабе или без его соблюдения) относительное расположение уровней. Здесь же удобно каким-либо наглядным способом представить графические образы волновых функций. Возникает квантовая диаграмма - «лесенка» уровней-состояний.

Ортогональность волновых функций:

Разные волновые функции «ящика» ортогональны:

 .

Для проверки этого свойства следует взять интеграл от произведения двух волновых функций при двух разных уровнях. Всегда получится нулевой результат.

Используйте формулу .

Ортогональность волновых функций разных состояний это очень общее важное свойство лю­бых квантово-механических систем. Сравнение с моделью волн Де-Бройля:

Энергетический спектр «ящика» совпадает с тем, что получен на основании примитив­ной модели стоячей волны Де-Бройля. Здесь на диаграмме в

 
качестве единицы энергии выбрана постоянная

величина . Уровни энергии в таком

случае изменяются пропорционально квадрату

квантового числа n.

Квантовое число n 1 2 3 4 5
Уровни энергии En b 4b 9b 6b 25b

Состояние с нулевой энергией у «ящика» не существует!

Далее было бы полезно обсуждение задач, для решения которых особенно полезна модель одномерного «ящика».

6.2. Плоский ротатор - простейшая модель вращения в плоскости. Условие однозначности состоит в повторяемости значений волновой функции через 2p. Удобно выразить волновые функции плоского ротатора в комплексной форме. Формула оператора момента импульса в плоском вращении, подобна формуле оператора импульса поступательного движения.

Уровень энергии называется вырожденным, если к нему относится не менее двух состояний. Напомним, что это означает равную энергию этих состояний. Все уровни плоского ротатора, лежащие выше основного, т.е. с |m|>0 дважды вырождены.

 

 

Рис. Полярные графики действительных орбиталей плоского ротатора

а) собственные функции гамильтониана

б) sp-гибридные орбитали

У волновых функций потенциального ящика и плоского ротатора имеются общие признаки. Оба набора представляют собою простейшие гармоники (синусоиды и косинусоиды). Их графики построены в естественных координатах, соответствующих природе движения. В обоих случаях число узлов (и пучностей) увеличивается с ростом номера уровня. Число узлов на единицу меньше номера уровня.

Орбитали, отвечающие чистым состояниям, комплексные и не имеют графического образа, но из них можно образовать действительное линейные комбинации. Орбитали таких смешанных состояний действительные, и их можно представить графически.

Есть две возможности составления линейных комбинаций.

Во-первых, можно составить действительные линейные комбинации в пределах одного уровня из орбиталей с одним и тем же квантовым числом |m|=0,1,2,... . Полученные действительные орбитали обозначим буквами греческого алфавита {s, p, d, ... }. Их полярные графики представлены на рис.

Во-вторых, можно смешать действительные орбитали разных уровней. Этот тип смешения называется гибридизацией. Обычно одна из них s-орбиталь (m=0). С ней можно смешать либо одну, либо две p-орбитали.

Каждая полученная гибридная функция обладает осью, вдоль которой ориентированы её пучности. Гибридные функции строятся так, чтобы их основные пучности были максимально удалены в пространстве друг от друга. Гибрид из двух функций содержит две sp-орбитали. Их графики представлены на рис.

Из s-орбитали с двумя p-орбитали можно построить три равноценные линейные комбинации. Получается sp2-гибрид. Его пучности ориентированы под углами 120o.

Гибриды полезны для понимания механизмов образования химических связей.

6.3. Гамильтониан одномерного гармонического осциллятора:

В простейших случаях возвращающая сила (сила упругости) линейно зависит от смещения (закон Гука F=-kx), направлена против направления смещения, вызывая гармонические колебания массы относительно точки равновесия. Потенциальная энергия квадратично зависит от расстояния. Эта модель очень широко используется в квантовой механике.

Существует шутка, что блюда французской кухни приготовлены из минимума продуктов, но с огромным разнообразием соусов и приправ.

Параллельная шутка утверждает, что квантовая механика подобна французской кухне, но основным блюдом является гармонический осциллятор (или «вибратор» по В.А. Фоку)... Это преувеличение не слишком велико. Действительно, во времени движения в стационарных системах строго периодические, и их, как известно, всегда удаётся свести к набору простых гармонических движений.

Гамильтониан линейного гармонического колебания записывают в виде

.(6.7)

Квантование уровней колебательной энергии передаётся формулой:

.(6.8)

Волновые функции гармонического осциллятора графически напоминают волновые функции одномерного ящика, однако это лишь качественное сходство, а сами их характеристики устроены несколько иначе.

Основа их - гауссова функция Y0=A0×exp(-ax2). У неё нет узлов, и это вид волновой функции низшего, нулевого уровня.

У следующего, первого уровня должен быть один узел. Он возникает, если ввести функцию-сомножитель P1=x. При перемножении Y0 и P1 получается Y1=P1×Y0=A1×x×exp(-ax2).

У последующего, второго уровня должно быть два узла. Их можно получить, если полином-сомножитель это квадратичная парабола P2= (ax2+bx+c). Произведение P2×Y0 это функция вида Y2=A2× (ax2+bx+c)×exp(-ax2), но у неё остаётся лишь подобрать коэффициенты...

У третьего уровня должно быть три узла. Они возникают, если сомножитель организован в виде кубической параболы, и Y3=P3×Y 0= A2×(dx3+ex2+fx +g)×exp(-ax2).

Продолжая эту процедуру, нетрудно получить любую функцию спектра.

Численные коэффициенты в таком наборе функций подбираются из условия их нормировки и взаимной ортогональности, а именно:


Информация о работе «Уравнение Шрёдингера для простейших стационарных движений»
Раздел: Физика
Количество знаков с пробелами: 15917
Количество таблиц: 4
Количество изображений: 8

Похожие работы

Скачать
15217
0
2

... ;; он-то и представляет собой численное значение искомой физической величины. Резюме. Выражения 4.3 и 4.4 настолько важны, что без них было бы затруднительно построить математический аппарат квантовой механики.   4.2. О структуре операторного уравнения Способ расчёта динамических переменных из волновой функции оказывается настолько общей, что затрагивает самые важные вопросы о способах ...

Скачать
40869
0
4

... при наличии сил, действующих на частицу, вместо Е в уравнение (16) нужно ввести кинетическую энергию частицы Т = Е –U. Произведя такую замену, мы придем к уравнению (12). Приведенные нами рассуждения не могут рассматриваться как вывод уравнения Шрёдингера. Их цель — пояснить, каким образом можно было прийти к установлению вида волнового уравнения для микрочастицы. Доказательством же правильности ...

Скачать
17071
3
3

... числу l. Энергетические уровни АО многоэлектронного атома (правило Клечковского-Маделунга): “Уровни АО многоэлектронного атома возрастают с ростом суммы квантовых чисел (n+l), а при равных значениях (n+l) ниже лежит уровень с меньшим n”. Экранирование ядра. Одноэлектронный подход к проблеме строения многоэлектронного атома. n+l N,l АО n+l n,l АО n+l n,l АО n+l n,l АО n+l n,l АО ...

Скачать
22682
0
1

... Модель атома водорода 1926- Шрёдингер-Волновое уравнение 1927- Гейзенберг-Соотношение неопределённостей. 1983- Туннельный микроскоп (...Академик В.Гинзбург (ФИАН): “Ну и дожили!”) Раздел 1. Экспериментальные основы квантовой механики. Волны материи. Простейшие полуклассические модели движений   Содержание: Движение частицы и движение сплошной среды. Корпускула и волна. Излучение и вещество ...

0 комментариев


Наверх