10 Мвар, то и на них установим БСК.

В таблицах 4 и 5 приведем рассчитанные данные по компенсации реактивной мощности и выбранные компенсирующие устройства.

Расчёт для каждой из четырёх схем приведём в приложении В.

Таблица 4 - компенсация реактивной мощности в зимний период

ПС

QТРКУ, Мвар

Компенсирующее устройство

QфактКУ1СШ, Мвар

QНЕСК,Мвар

А 5,04 11УКЛ-10-450 4,95 18,9
Б 4,608 5УКЛ-10-900 4,5 29,61
В 5,25 17УКЛ-10-300 5,1 11,22
Г 6,3 7УКЛ-10-900 6,3 9,1
Д 6,815 15УКЛ-10-450 6,75 7,67
Е 5,22 17УКЛ-10-300 5,1 4,92

Таблица 5 - Компенсация реактивной мощности в летний период

ПС

QТРКУ. Л, Мвар

Компенсирующее устройство

QфактКУ1СШ. Л,Мвар

QНЕСК. Л,Мвар

А 3,528 7УКЛ-10-450 3,15 13,86
Б 3,522 3УКЛ-10-900 2,7 21,627
В 3,675 12УКЛ-10-300 3,6 7,794
Г 4,41 4УКЛ-10-900 3,6 7,99
Д 4,77 10УКЛ-10-450 4,5 5,819
Е 3,654 12УКЛ-10-300 3,6 3,384

5. Технический анализ четырёх вариантов 5.1 Выбор номинального напряжения

Для определения номинального напряжения выбранных схем будем пользоваться формулой Илларионова, которая используется для всей шкалы номинальных напряжений от 35 кВ до 1150 кВ. Для этого необходимо знать активную мощность  и длину, определяемого участка с учётом коэффициента трассы, который для дальневосточного региона берём равным: Kтр=1,2. Следует также заметить, что расчет не требует нахождения напряжения на каждом участке сети в кольцевых сетях и сетях с двухсторонним питанием. Достаточно найти напряжения на головных участках схем. Напряжения на других участках будут равны напряжениям на головных. Приведем пример такого расчета для схемы 3 (приложение А), которая состоит из двух колец и участка двухцепной линии.

Нахождение потоков мощностей в кольцах без учета потерь сводиться к расчету простых разомкнутых магистралей с двусторонним питанием, для чего их разрезают по источнику питания (рисунок 1).

Определим мощности, текущие по головным участкам схемы.

Рисунок 1 - Вид кольца Б¢ - Г - В - Д - Б¢¢, разрезанного по источнику питания

Сечения проводов еще не выбрано, а следовательно, сопротивления линий не определены, необходимо знать длины линий каждого участка, с помощью которых, и будет проводиться расчет. Длина каждого участка приведена в приложении А. Так как на коэффициент трассы умножается и числитель и знаменатель - можно его не учитывать, а просто подставлять длину участка.

Потоки активных мощностей без учета потерь:

головного участка Б`-Г:

 (12)

головного участка Б`` - Д:

где  - суммарная длина всех участков рассматриваемого кольца.

Для того, чтобы убедиться в правильности расчета произведём проверку по I закону Кирхгофа: сумма мощностей на головных участках, равна сумме нагрузок рассматриваемого кольца.

 (13)

МВА

Проверка подтверждает, что расчет выполнен верно.

Теперь, зная мощности, текущие по головным участкам, находим номинальное напряжение кольца по формуле Илларионова:

 (14)

Принимаем номинальное напряжение кольца равным 110 кВ.

Таким же образом находим значения рациональных напряжений для всех десяти схем. Расчет указан в приложении В.

5.2 Выбор числа и мощности силовых трансформаторов

Число силовых трансформаторов выбирается с учетом того, каких именно потребителей они должны питать. Как было указано в пункте 3.2, потребители I и II категорий должны быть обеспечены электроэнергией от двухтрансформаторных подстанций. Почти у каждой ПС проектируемой сети есть как потребители I, так и II категории. Следовательно, каждая из ПС будет укомплектована двумя трансформаторами.

В первую очередь следует определить минимальную мощность, которой могут быть загружены два трансформатора в нормальном режиме работы. Ниже этой мощности работа трансформаторов будет невозможна. То есть, если максимальная мощность подстанции, данная в задании, будет ниже найденного значения, то принимать участок, к которому относится ПС, к осуществлению нельзя, т.к найти трансформатор на такую мощность не представляется возможным. В этом случае необходимо будет рассматривать другие компоновки схем.

В нормальном режиме считаем, что каждый трансформатор загружен на 70%, т.е. коэффициент загрузки одного трансформатора равен 0,7; тогда для двухтрансформаторной подстанции этот коэффициент будет равен

 (15)

Минимальная мощность двух, работающих на одну нагрузку, трансформаторов на 110 кВ равна 2,5 МВА.

Тогда:

Минимальная мощность на 220 кВ - 32 МВА.

Тогда:

 (16)

Можно сделать вывод о том, что на подстанциях Д и Е нельзя принимать напряжение 220 кВ.

Для всех четырех схем участок УРП - Б выполнен на напряжение 220 кВ, все остальные участки - 110 кВ. Баланс реактивной мощности един для всех четырех схем, поэтому компенсация реактивной мощности будет одинакова.

Тогда расчет трансформаторов необходимо выполнить только для одной схемы. Для всех остальных он будет идентичным.

Зная коэффициент загрузки, среднюю активную мощность и нескомпенсированную реактивную мощность на подстанции, из формулы (16) можем определить приблизительную мощность, на которую будут рассчитаны трансформаторы.

Например, для ПС А схемы 3:

Ближайшая номинальная мощность по каталожным данным 63 МВА. Проверяем трансформаторы по загруженности, определяя коэффициент загрузки в нормальном режиме. Он должен быть в пределах: 0,5 - 0,75.

 (17)

Также необходима проверка выбранных трансформаторов в условиях послеаварийной работы. Она характеризуется выводом из строя одного из трансформаторов, т.е. принимаем, что =1. Коэффициент загрузки в этом случае должен находиться в пределах от 1 до 1,4, исходя из возможности работы трансформатора со 140% загрузки.

 (18)

Полученные в формулах (17) и (18) значения коэффициентов загрузок показывают, что трансформаторы на подстанции выбраны правильно и даже в послеаварийном режиме смогут обеспечивать потребителя электроэнергией без перерыва в снабжении.

В том случае, если в послеаварийном режиме коэффициент загрузки превышает заданные пределы, это означает, что оставшийся в работе трансформатор будет перегружен. Тогда необходимо отключать от сети часть потребителей III категории.

В летнем режиме трансформаторы могут быть недогружены. В этом случае один трансформатор на подстанции отключается.

Получив значения мощностей трансформаторов, работающих на промышленную нагрузку и проверив их по коэффициентам загрузки, выбираю трансформаторы - типа ТРДЦН-63000/110.

Также как и для подстанции А, определим все необходимые расчётные характеристики на всех подстанциях и сведём их в таблицу 6. Выбор трансформаторов на других подстанциях в приложении В.

Таблица 6 - Выбор трансформаторов

ПС

SТР, МВА

SТР. Л, МВА

Kз. з Kз. з. пав Kз. л Kз. л. пав Выбранный трансформатор
А 48,66 34,2 0,54 1,08 0,38 0,76 ТРДЦН-63000/110
Б 91,3 64,48 0,51 1,02 0,36 0,72 АТДЦН-125000/220/110
В 28,43 19,89 0,49 0,99 0,35 0,7 ТРДН-40000/110
Г 23,64 16,9 0,66 1,32 0,47 0,95 ТРДН-25000/110
Д 19,61 13,82 0,55 1,1 0,39 0,77 ТРДН-25000/110
Е 12,2 8,53 0,53 1,07 0,37 0,75 ТМН-16000/110
5.3 Выбор сечений воздушных линий методом экономических токовых интервалов

Строится зависимость приведенных затрат от максимального тока. При этом затраты определяются для каждого сечения. Показанные зависимости приведенных затрат от максимального тока, реализованы в виде таблиц, включающих экономические токовые интервалы, т.е. те интервалы, в которых сечение будут иметь минимальные приведенные затраты.

Прежде, чем определить максимальный ток в линиях, необходимо определить потоки мощности, протекающие по ним. С учётом найденных в п.4.2 нескомпенсированных реактивных мощностей в линиях и потоков максимальной мощности, определяется полная мощность, протекающая по линии. Потоки активной мощности в линиях будем определять так же, как и в п.5.1, используя длину линий.

Тогда максимальный ток каждого участка определим по формуле:

, (19)

где  - число цепей рассматриваемого участка;

Uном - номинальное напряжение, кВ.

Определив максимальный ток, находим расчётный, зависящий от коэффициентов ai и aT:

ai - коэффициент, учитывающий изменение нагрузки по годам эксплуатации; для сетей 110-220 кВ в курсовом проекте этот коэффициент принимается равным 1,05. Введение этого коэффициента учитывает фактор разновременности затрат в технико-экономических расчетах.

aT - коэффициент, учитывающий число часов использования максимальной нагрузки линий и ее значение в максимуме ЭЭС (определяется коэффициентом Kм). Значение этого коэффициента принимается равным отношению нагрузки линий в час максимума нагрузки энергосистемы к собственному максимуму нагрузки линий. Kм принимается равным 1. Коэффициент aT определяем с помощью интерполяции из таблицы в ЭТС. Зная что Tмакс=4500 часов, aT принимаем равным 0,95.

С учётом вышеизложенного запишем выражение для расчётного тока:

 (20)

Для схемы 3 (Приложение А) найдем эти токи:

Таким образом, получив значения расчётных токов для всех участков рассматриваемых схем, по экономическим токовым интервалам, приведённых в виде таблиц в /14/, определяем сечения линий. Для всех схем выбираем провода марки АС - со стальным сердечником разного диаметра. Также выберем свободностоящие железобетонные опоры, которые характеризуются долговечностью по отношению к другим видам опор, простотой обслуживания.

Участок ДВ: АС-240. Участок ВГ: АС-120.

Участок БГ: АС-240. Участок УРП-Б: АС-400.

Полученные сечения необходимо проверить по длительно допустимому току. Для этого рассчитывается послеаварийный режим, т.е. такой режим, при котором в схемах обрываются самые загруженные участки колец и сетей с двухсторонним питанием и по одной линии у двухцепных участков. Для примера покажем расчет тока для схемы 3.

Мощность участка  найдём как:

Мощность участка :

Мощность участка :

Мощность участка :

Послеаварийные токи соответствующих участков:


Рисунок 2 - Послеаварийный режим для схемы 3

Значения токов для рассчитанных участков меньше длительно допустимых, определяемых из /4/. Аналогичным образом рассчитывается каждая схема. Результаты расчётов сведены в таблицы 7, 8, 9 и 10.

Не на всех участках проходим по рабочему току поэтому необходимо усиление линий, т.е. повышение класса номинального напряжения или числа цепей. Выбранные сечения приведены в таблицах 11, 12, 13 и 14. Усиление показано в таблице 15.

Таблица 7 - Максимальный и рабочий токи схемы 1

Участок сети Потоки активной мощности, МВт Рациональное напряжение, кВ Максимальный ток, А Рабочие токи, А
УРП - А 47,933 128,75 260 260
УРП - Б 205 166,749 279 279
УРП - Е 42,067 114,883 228 228
Б - Г 106 134,98 288 (144) 287 (143)
Г - В 41,732 109,728 227 226
Г - Д 29,268 99,113 159 159
Д - В 0,268 10,347

1,51*10-3

1,51*10-3

А - Е 24,067 94,837 131 130

Таблица 8 - Максимальные и рабочие токи схемы 3

Участок сети Потоки активной мощности, МВт Рациональное напряжение, кВ Максимальный ток, А Расчетные токи, А
УРП - А 47,933 128,75 260 260
УРП - Б 205 166,749 279 279
УРП - Е 42,067 114,883 228 228
Б - Д 57,744 136,546 313 (157) 301 (156)
Г - В 13,256 68,723 72 72
Б - Г 48,256 129,616 262 261
Д - В 28,744 93,351 156 156
А - Е 24,067 94,837 131 130

Таблица 9 - Максимальные и рабочие токи схема 6

Участок сети Потоки активной мощности, МВт Рациональное напряжение, кВ Максимальный ток, А Расчетные токи, А
УРП - А 47,933 128,75 260 260
УРП - Б 205 166,749 279 279
УРП - Е 42,067 114,883 228 228
Б - Д 106 134,98 288 (144) 287 (143)
Г - В 41,732 109,728 11,9 11,9
Г - Д 29,268 99,113 159 159
Д - В 0,268 10,347 240 239
А - Е 24,067 94,837 131 130

Таблица 10 - Максимальные и расчетные токи схема 10

Участок сети Потоки активной мощности, МВт Рациональное напряжение, кВ Максимальный ток, А Расчетные токи, А
УРП - Б 205 166,749 279 279
УРП - Е 90 117,937 244 244
Б - Д 57,744 101,572 313 (157) 313 (156)
Г - В 13,256 68,723 72 72
Б - Г 48,256 129,616 262 261
Д - В 28,744 93,351 156 156
А - Е 72 68, 19 65 65

Таблица 11 - Выбор сечения проводов для схемы 1

Участок сети Номинальное напряжение, кВ Число цепей Марка и сечение провода
УРП - А 110 1 АС-240
УРП - Б 220 2 АС-400
УРП - Е 110 1 АС-240
Продолжение таблицы 11
Б - Г 110 (220) 2 АС-240
Г - В 110 1 АС-240
Г - Д 110 1 АС-240
Д - В 110 1 АС-120
А - Е 110 1 АС-150

Таблица 12 - Выбор сечения проводов для схемы 3

Участок сети Номинальное напряжение, кВ Число цепей Марка и сечение провода
УРП - А 110 1 АС-240
УРП - Б 220 2 АС-400
УРП - Е 110 1 АС-240
Б - Г 110 1 АС-240
Г - В 110 1 АС-120
Б- Д 110 1 (2) АС-240
Д - В 110 1 АС-240
А - Е 110 1 АС-150

Таблица 13 - Выбор сечения проводов для схемы 6

Участок сети Номинальное напряжение, кВ Число цепей Марка и сечение провода
УРП - А 110 1 АС-240
УРП - Б 220 2 АС-400
УРП - Е 110 1 АС-240
Б - Д 110 (220) 2 АС-240
Г - В 110 1 АС-120
Г - Д 110 1 АС-240
Д - В 110 1 АС-240
А - Е 110 1 АС-150

Таблица 14 - Выбор сечения проводов для схемы 10

Участок сети Номинальное напряжение, кВ Число цепей Марка и сечение провода
УРП - Б 220 2 АС-400
УРП - Е 110 2 АС-240
Б - Г 110 1 АС-240
Г - В 110 1 АС-120
Б- Д 110 1 (2) АС-240
Д - В 110 1 АС-240
А - Е 110 2 АС-150

Таблица 15 - Усиление линий принятых вариантов

№ сети Длина линии, км Число выключателей
1 450 29
3 402,6+48,4=451 27
6 417,2 29
10 440,8+48,4=489,2 29

После усиления некоторых участков схем с помощью вторых цепей и повышения номинального напряжения, необходим новый выбор трансформаторов на подстанциях (приложение В).

Последним этапом технического анализа четырёх вариантов конфигураций схем является выбор схем распределительных устройств.

5.4 Выбор схем распределительных устройств

Различные схемы распределительных устройств (РУ) были намечены ещё в той части курсового проекта, где считалось суммарное количество выключателей в каждой схеме.

Для разомкнутых сетей по способу подключения подстанции могут быть либо тупиковыми, либо отпаечными.

В замкнутых сетях по способу присоединения подстанции - проходные либо транзитные.

Главная схема электрических соединений подстанций зависит от следующих факторов: типа подстанции, числа и мощности установленных силовых трансформаторов, категорийности потребителей электрической энергии по надежности электроснабжения, уровней напряжения, количества питающих линий и отходящих присоединений, величин токов короткого замыкания, экономичности, гибкости и удобства в эксплуатации, безопасности обслуживания

Если к подстанции подходят две линии напряжением до 110 кВ включительно, применяется схема “мостик", для промышленных подстанций - с выключателями в цепях трансформаторов. На напряжение 220 кВ и выше, с мощностью подключаемых трансформаторов 63 МВА и выше применяется схема “четырёхугольник"; до 40 МВА - “мостик”.

Занесём данные о выбранных схемах подстанций в таблицу 16.

Таблица 16 - Схемы распределительных устройств

ПС Схема 1 Схема 3 Схема 6 Схема 10
А Четырёхугольник Четырёхугольник Четырёхугольник Четырехугольник
Б Одиночная секционир. сист. шин и четырехугольник Одиночная секционир. сист. шин и четырехугольник Одиночная секционир. сист. шин и четырехугольник Одиночная секционир. сист. шин и четырехугольник
В Мостик Мостик Мостик Мостик
Г Одиночная секционир. сист. шин Мостик Мостик Мостик
Д Мостик Расширенный мостик Одиночная секционир. сист. шин Мостик
Е Мостик Мостик Мостик Одиночная секционир. сист. шин

В 1, 6 и 10 схемах количество выключателей одинаково, тогда как для схемы 3 их меньше. Сравнивая схемы по второму важному признаку - длине линий в одноцепном исполнении, видим, что у схемы 10 она больше всего. Значит, на дальнейшее рассмотрение оставляем первые три схемы.

Схема 6 выгодно отличается от других наименьшей длиной линий, по этому показателю выделим её от других.

Таким образом, к технико-экономическому сравнению принимаем 3 и 6 схемы.


6. Технико-экономическое сравнение двух вариантов 6.1 Общие сведения

При технико-экономическом сравнении вариантов производится оценка экономической эффективности каждого из них. При этом к показателям, по которым варианты могут быть оценены, относят:

Статические. К ним относятся: простая норма прибыли и простой срок окупаемости. Динамические. Эта группа включает такие показатели, как: чисто дисконтированный доход (ЧДД), внутренняя норма доходности, дисконтированный срок окупаемости, удельные дисконтированные затраты, эквивалентные годовые расходы (приведённые затраты), дисконтированные затраты. В данном курсовом проекте оценка экономичности вариантов производится по эквивалентным годовым расходам, которые определяются по формуле:

, (21)

где Е - норматив дисконтирования, меняющийся в зависимости от ставки рефинансирования ЦБ; принимается равным 0,1; К - капитальные вложения в рассматриваемый объект за год; И - суммарные эксплуатационные издержки.

Капитальные вложения - это вложения, необходимые для сооружения электрических сетей, электрических станций и энергообъектов. Они определяются, как:

К = КВЛПС, (22)

где КВЛ - капитальные вложения на сооружение воздушных линий. Сюда входят затраты на изыскательские работы, подготовку трасы, затраты на приобретение опор, проводов, линейной арматуры, заземлителей, их транспортировку и монтаж;

КПС - капиталовложения на сооружения подстанций. Их будем определять по укрупнённым стоимостным показателям в /11/, как:

КПС= КТР+ КРУS+ КПОСТ+ ККУ, (23)

где КТР - рыночная стоимость трансформаторов;

КРУS- суммарная стоимость ячеек ОРУ на рассматриваемой ПС;

КПОСТ - постоянная часть затрат, включающие стоимость средств пожарной безопасности, контура заземления и т.п.;

ККУ - стоимость принятых к установке БСК.

Для технико-экономического сравнения вариантов эксплуатационные издержки учитываются как процент отчислений от укрупнённых капитальных вложений. Все значения базовых показателей стоимости взяты из укрупненных стоимостных показателей электрических сетей /11 /.

Эксплуатационные издержки включают в себя затраты, связанные с передачей и распределением электроэнергии по сетям, необходимые для эксплуатации энергетического оборудования и электрических сетей в течение одного года.

В эксплуатационные издержки входят:

Суммарные затраты электросетевых хозяйств на ремонтно-эксплуатационное обслуживание сетей:

ИРЭО=aРЭО·К, (24)

где aРЭО - нормы на обслуживание и ремонт ВЛ, ПС.

Отчисления на амортизацию, включающие отчисления на реновацию и капитальные ремонты:


, (25)

где К - капиталовложения в ВЛ и ПС;

Тсл - срок службы ВЛ и ПС.

Стоимость потерь электроэнергии:

, (26)

где ΔW - потери электроэнергии в ВЛ, трансформаторах и компенсирующих устройствах;

- удельная стоимость потерь электроэнергии; в текущем году равен 60.

Покажем нахождение потерь на примере участка УРП-А-Е-УРП в схеме 3.

6.2 Определение потерь электроэнергии и их оценка

Потери электроэнергии на обозначенном участке УРП-А-Е-УРП необходимо начинать с подготовки всех необходимых данных по нему.

С учётом полученных сведений о линиях для нахождения потоков мощностей, проходящих по ним, буду пользоваться сопротивлением линий. Находить потери буду по эффективной и нескомпенсированной мощностям, т.е. по

Тогда мощности выделенных участков в зимний период будут определяться, как:

В летний период потоки мощностей находятся аналогично зимним, но с учетом летних эффективных мощностей.

Потери мощности в трансформаторах на подстанциях, входящих в участок УРП-А-Е-УРП определим по формуле:

где ТЗ (Л) - число часов в зимний (летний) период времени (см. п.1.3);

ТГ - число часов в году; Rтр - активное сопротивление трансформаторов; ΔРХХ - потери холостого хода в трансформаторах.

Потери мощности на участках, образующих кольцо:

 (27)

Теперь, получив потери в интересующем нас участке, и подставив их значения в формулу (26) можем найти потери в данном кольце.

Таким же образом производится расчёт для каждой схемы до тех пор, пока не будут определены суммарные эксплуатационные издержки и суммарные капиталовложения в проектируемые сети. Результаты расчётов по каждой схеме занесём в таблицу 17.

Таблица 17 - Сравнение двух вариантов по экономическим показателям

Показатель Схема 3 Схема 6
Капиталовложения в подстанции, млн. руб. 778,8 948,9
Капиталовложения в линии, млн. руб. 867,9 836,2
Суммарные капиталовложения, млн. руб. 1646,7 1785
Стоимость потерь электроэнергии, млн. руб. 32,96 28,9
Продолжение таблицы 17
Эксплуатационные издержки, млн. руб. 45,1 53,2
Издержки на амортизацию, млн. руб. 82,3 89,2
Суммарные издержки, млн. руб. 160,4 171,3
Затраты, млн. руб. 325 350

Себестоимость,

2,9 3,6

Разница в затратах между схемами более 5%.

Из расчета видно, что схема 3 имеет меньшие капиталовложения, затраты и издержки. Эта схема проще в управлении, хотя и имеет большую стоимость потерь электроэнергии. Примем эту схему для расчета режимов.

В данном разделе был осуществлен расчет и сравнение экономических показателей двух вариантов схем, были определены приведенные затраты, капиталовложения и стоимость потерь электроэнергии. Сравнивая рассчитанные показатели двух схем, была выбрана наиболее экономичная. Расчет экономических показателей схем в программе MathCAD 11 приведен в приложении Д.


7. Расчёт установившихся режимов 7.1 Общие сведения

В каждой энергосистеме в той или иной степени происходит постоянное непрерывное изменение её параметров (частоты f, напряжения U, тока I, мощностей P и Q, углов сдвига между напряжениями в разных точках линии и т.п.). Различное сочетание этих, влияющих друг на друга параметров в каждый момент времени называется режимом энергосистемы.

К режимам, которые наиболее полно описывают картину происходящих в выбранном варианте процессов, относятся:

максимальный зимний режим; расчёт в данном режиме производится по максимальной активной и нескомпенсированной в зимний период реактивной мощностям;

режим летнего минимума, где за основу берутся те же величины, что и в пункте 1, но рассчитанные для летнего режима;

послеаварийный режим, который рассчитывается при обрыве наиболее загруженных участков сети. Начальными данными в этом режиме будут те же значения мощностей, что и в п.1

Данные по выбранным трансформаторам и сечениям ВЛ, необходимые для дальнейшего расчёта, сведём в таблицы 18 и 19.

Таблица 18 - Исходные данные о трансформаторах на подстанциях

ПС Сведения о трансформаторах

Rтр, Ом

Xтр, Ом

DPХ, МВт

DQХ, Мвар

Gтр, мкСм

Bтр, мкСм

А 0,87 22 0,059 0,41 4,5 31
Б 3,2; 0,48; 0,55 59,2; 0; 131 0,065 0,625 1,23 11,81
В 1,4 34,7 0,036 0,26 2,7 19,66
Г 2,54 55,9 0,027 0,175 2,04 13,23
Д 2,54 55,9 0,027 0,175 2,04 13,23
Е 4,38 86,7 0,019 0,112 1,44 8,45

Таблица 19 - Исходные данные по воздушным линиям

Участок Сведения о линиях

RВЛ, Ом

XВЛ, Ом

Вij, мкСм

QCi, Мвар

УРП-Б 1,62 9,07 233,3 5,56
УРП-А 7,34 24,79 172 1,04
УРП-Е 3,67 12,39 86 0,52
Б-Г 7,78 26,24 182 1,1
Б-Д 2,9 9,79 272 1,64
Г-В 5,38 9,22 56,2 0,34
В-Д 2,59 8,75 60,7 0,37
А-Е 13,54 28,73 185 1,12

Из всех перечисленных выше режимов алгоритм расчёта приведём лишь для режима максимальной зимней нагрузки. Данный режим будет просчитан при помощи программы Mathcad. Расчёты приведём в приложении Д.

7.2 Расчёт установившегося максимального режима

Алгоритм расчёта режима:

Приведем схему выбранного варианта с нанесёнными на неё сечениями проводов и нагрузками на рисунке 3.


Рисунок 3.

Составляем схему замещения (рис.4). Рассчитываем ее параметры, используя параметры, которые уже указаны в таблицах 18 и 19.

Расчет производился по следующим формулам, с помощью справочных данных для трансформаторов и проводов, взятых из /1/ и /5/.

активная проводимость

, мкСм (28)

индуктивная проводимость

, мкСм (29)

ёмкостная проводимость

, мкСм (30)

зарядная мощность линий


, Мвар (31)

Рисунок 4 - Схема замещения для ручного расчёта

Определяем потери мощности в трансформаторах по следующей формуле:

 (32)

Находим приведённую, а после и расчётную нагрузку каждого узла, учитывая раздельную работу каждого трансформатора.

Для двух трансформаторов:

Sпр. i= Si+2·Δ Sтр. i (33)

Sр. i= Sпр. i - jQci (34)


Определяем потоки и потери мощности в линиях на примере кольца УРП - А-Е-УРП (1`-7-8-1``). Схему замещения кольца укажем на рисунке 5.

Рисунок 5 - Схема замещения кольца УРП - А-Е-УРП (1`-7-8-1``)

Находим потоки мощности, текущие по головным участкам 1`-7 и 1``-8.

Находим точку потокораздела:

Как видно из приведённых формул точкой потокораздела в кольце будет узел А (8) как по активной, так и по реактивной мощности.

Разрезая сеть по точке потокораздела, получим две разомкнутые схемы, рассчитывая которые, находим потоки мощности.

Разомкнутая сеть 1`-7-8`:


Рисунок 6.

Точно по такому же алгоритму находятся потоки мощности в кольце Б-Д-В-Г-Б. Суммарная нагрузка узла 3 (средняя сторона автотрансформатора) равна:

Затем находим потери мощности в обмотках автотрансформатора и потоки мощности протекающие по ним.

Определяем расчетную нагрузку 2 узла:

Рассчитываем разомкнутую сеть 1-2 напряжением 220 кВ.

6) Определяем напряжение в каждом узле. Они находятся при условии, что известны напряжения у источников питания. В данном режиме:

UУРП=1,09Uном кВ

Тогда напряжение узлах 2, 7 и 8 можно найти, как:

Для узлов 4 и 5:

Напряжение узла 6 можно получить с двух сторон:

В задании также определены желаемые напряжения на низкой стороне. Поэтому необходимо определять напряжение на шинах НН. Для этого напряжение низкой стороны надо привести к высокой стороне и найти желаемый коэффициент трансформации. После выбираем номер ответвления РПН, который будет обеспечивать желаемое напряжение на низкой стороне.

Расчёты по остальным режимам выполняются в промышленной программе SDO 6 (схема замещения сети в послеаварийном режиме будет приведена на рисунке 15). Также в ней осуществляется проверка рассчитанного ручным способом режима максимальных нагрузок. Данные по его расчёту сведены в таблицу 20.

Таблица 20 - Данные по расчёту максимального режима ручным способом

Подстанция

Uузла, кВ

А 112,2 119,4 10,2 11 10,1
Б 233,6 200,6 10 9 10
В 104,5 101,7 10,4 16 10,3
Г 104,7 100,8 10,3 16 10,3
Д 106,7 103,7 10,4 15 10,4
Е 117 114,2 10,42 10 10,5

Данные, полученные в результате расчёта программой, занесём в приложение Е курсового проекта.


8. Анализ установившихся режимов 8.1 Анализ напряжений в узлах

Полученные значения напряжений высокой и низкой стороны в узлах схемы сравниваются с номинальными. Разница для высокого напряжения не должна выходить за интервал ±15%, для низкого напряжения ±5%.

Полученные в расчете отклонения сведем в таблицу 21.

Таблица 21 - Анализ отклонения напряжений в узлах

ПС А Б В Г Д Е
Отклонение напряжения Максимальный режим
ВН 2,5 6,3 -4,6 -4,5 -2,7 6,6
НН 0,8 -0,5 2,8 4 4,6 4,9
Минимальный режим
ВН -3,7 0,8 -7,5 -7,4 -6 -0,7
НН 0,4 0,2 2,3 3,3 3,7 5,6
Послеаварийный режим
ВН -0,5 3,9 -9,4 -7,5 -10,8 6,1
НН 1 0 3 3 4 5

Во всех режимах процент отклонений соблюдается во всех узлах.

Расчет отклонений напряжения от номинального приведен в приложении Ж.


8.2 Анализ потерь

Отношение потерь активной мощности к генерируемой мощности не должно превышать 5%. Отношение потерь реактивной мощности к генерируемой с учетом генерации в линиях не должно превышать 25 - 30%.

Расчетные данные поместим в таблицу 22.

Таблица 22 - Оценка потерь мощности

Потери Максимальный режим Минимальный режим Послеаварийный режим

3 2,4 8,2

45,4 31,8 60,5

Из таблицы видно, что в максимальном и минимальном режимах потери активной мощности не выходят за допустимые, по реактивной мощности напротив не выдерживаем пределов. В послеаварийном режиме обе составляющие потерь выходят за пределы допустимых.

Расчет анализа потерь мощности приведен в приложении Ж.


8.3 Анализ баланса активной и реактивной мощности

Сумма потребляемой мощности и потерь должна равняться генерируемой мощности.

Расчетные данные по балансу представим в таблице 23.

Таблица - 23 Анализ баланса

Параметр Максимальный режим Минимальный режим Послеаварийный режим

, МВт

304 211,5 321,2

, МВт

304 211,5 320,7

, Мвар

174,4 111,1 216,9

, Мвар

174,1 110,5 215,3

Баланс полностью выполняется во всех режимах, т.е. расчет произведен верно.

Определение баланса приведено в приложении Ж.

8.4 Анализ загрузки ВЛ

Анализ загрузки ВЛ производиться по значениям экономической и фактической плотностей тока, при оптимальной загрузке они должны быть почти равными.

Экономическую плотность тока найдем для каждого из сечений по формуле:

,

где I эк. max - максимальный ток, принятый из таблицы в ЭТС для каждого сечения, А;

F - сечение провода, мм2.

Фактическая плотность тока,

,

где Iф - ток протекающий по линии в том или ином режиме, взятый из SDO6, А.

Рассчитанные плотности тока приведены в таблице 24.

Таблица 24 - Анализ загрузки ВЛ

Участок УРП-Б УРП-А УРП-Е Б-Д Б-Г Г-В В-Д А-Е
Максимальный режим

, А/мм2

0,7 1,2 1,2 1,1 1,2 0,7 1,2 0,9

, А/мм2

0,7 1,1 0,9 0,8 0,9 0,1 1 0,8
Минимальный режим

, А/мм2

0,7 1,2 1,2 1,1 1,2 0,7 1,2 0,9

, А/мм2

0,5 0,8 0,7 0,6 0,7 0,1 0,7 0,6
Послеаварийный режим

, А/мм2

0,8 - 1,2 - 1,2 0,7 1,2 0,9

, А/мм2

1,5 - 2 - 2,6 3,6 0,7 2,6

В максимальном режиме загрузка ВЛ нормальна, в минимальном она снижается за счет снижения нагрузки. В послеаварийном режим линии работают почти с двойной загрузкой.

Анализ загрузки ВЛ приведен в приложении Ж.


9. Задание для углубленной проработки. методы регулирования напряжения

Напряжение сети постоянно меняется вместе с изменением нагрузки, режима работы источника питания, сопротивлений цепи. Отклонения напряжения не всегда находятся в интервалах допустимых значений. Причинами этого являются:

потери напряжения, вызываемые токами нагрузки, протекающими по элементам сети;

неправильный выбор сечений токоведущих элементов и мощности силовых трансформаторов;

неправильно построенные схемы сетей.

Контроль за отклонениями напряжения проводиться тремя способами:

по уровню - ведется путем сравнения реальных отклонений напряжения с допустимыми значениями;

по месту в электрической сети - ведется в определенных точках сети, например в начале или конце линии, на районной подстанции;

по длительности существования отклонения напряжения.

Регулированием напряжения называют процесс изменения уровней напряжения в характерных точках электрической системы с помощью специальных технических средств. Исторически развитие методов и способов регулирования напряжения и реактивной мощности происходило от низших иерархических уровней управления энергосистемами к высшим. В частности, в начале использовалось регулирование напряжения в центрах питания распределительных сетей - на районных подстанциях, где изменением коэффициента трансформации поддерживалось напряжение у потребителей при изменении режима их работы. Регулирование напряжения вначале применялось также непосредственно у потребителей и на энергообъектах (электростанциях, подстанциях).

Эти способы регулирования напряжения сохранились и до настоящего времени и применяются на низших иерархических уровнях автоматизированной системы диспетчерского управления (АСДУ). С точки зрения высших уровней АСДУ это локальные способы регулирования.

Локальное регулирование напряжения может быть централизованным, то есть проводиться в центре питания (ЦП), и местным, т.е. проводиться непосредственно у потребителей.

Принципиально способы регулирования напряжения можно разделить на две основные группы:

изменение потерь напряжения в элементах сети;

регулирование напряжения на питающем и приемном конце сети - регулирование возбуждения генераторов и коэффициента трансформации трансформаторов с РПН.

Целесообразность применения того или иного способа регулирования напряжения определяется местными условиями в зависимости от протяженности сети и ее схемы, резерва реактивной мощности и т.п.

9.1 Изменение потерь напряжения в сети

Потери напряжения в линиях и трансформаторах зависят от номинального напряжения, нагрузки элемента сети и ее электрического сопротивления. Номинальное напряжение сети выбирают на основании технико-экономических расчетов, поэтому применение повышенных номинальных напряжений только из соображений уменьшения потерь напряжения в сети обычно не оправдывается.

Таким образом, изменять значения потерь напряжения в сети практически возможно только путем изменения сопротивления сети или ее нагрузки.

Практически изменение сопротивления сети связывают с изменением режима напряжений только в двух случаях:

при выборе сечений проводов и жил кабелей по допустимой потере напряжения;

при изменений последовательного включения конденсаторов с воздушной линией.

Последовательно включенные конденсаторы компенсируют часть индуктивного сопротивления линии, тем самым уменьшается реактивная слагающая потерь напряжения в линии и создается как бы некоторая добавка напряжения в сети, зависимая от нагрузки.

Последовательное включение конденсаторов целесообразно лишь при значительной реактивной мощности нагрузки при коэффициенте реактивной мощности tgφ>0.75-1. Если коэффициент реактивной мощности близок к нулю, потери напряжения в линии определяются в основном активным сопротивлением и активной мощностью. В этих случаях компенсация индуктивного сопротивления нецелесообразна.

Последовательное включение конденсаторов очень эффективно при резких колебаниях нагрузки, так как регулирующий эффект конденсаторов - величина добавки напряжения - пропорционален току нагрузки и автоматически изменяется практически безынерционно. Поэтому последовательное включение конденсаторов следует применять в воздушных линиях напряжением 35 кВ и выше, питающих резкопеременные нагрузки с относительно низким коэффициентом мощности. Их используют также в промышленных сетях с резкопеременными нагрузками.

Изменение нагрузок сети. Нагрузка сети определяется мощностью, одновременно потребляемой присоединенными к ней потребителей и теряемой в элементах сети. Активная мощность вырабатывается генераторами электростанций, что является наиболее экономичным. В связи с этим оказывается невозможным изменять активную нагрузку сети только ради изменения потерь напряжения в ней.

В противоположность этому реактивная мощность может вырабатываться не только генераторами электростанций, но и специальными источниками реактивной мощности.

Удельная мощность поперечно включенных батарей конденсаторов, необходимая для повышения напряжения в конце линии на 1%, зависит от номинального напряжения и индуктивного сопротивления передачи.

9.2 Регулирование напряжения

Регулирование возбуждения генераторов электростанций позволяет изменять напряжение в сети в относительно небольших пределах. Генератор выдает номинальную мощность при отклонениях напряжения на его выводах не более ± 5% от номинального. При больших отклонениях мощность генератора должна быть снижена. Практически этот способ регулирования может обеспечить необходимый режим напряжения для близлежащих потребителей, питающихся от шин генераторного напряжения электростанции.

Изменение коэффициента трансформации трансформаторов, автотрансформаторов под нагрузкой при наличие встроенного устройства для регулирования напряжения. При этом коэффициент трансформации можно менять в широких пределах.

Различают централизованное (проводится в центре питания) и местное (проводится у потребителей) регулирование напряжения.

В курсовом проекте регулирование напряжения осуществлялось на понижающих подстанциях сети при помощи регулировочных ответвлений под нагрузкой (трансформаторы с РПН), установленных на двухобмоточных трансформаторах. Одна часть ответвлений витков в таких трансформаторах включена согласно с основной обмоткой, другая - встречно. При присоединении контактов к виткам ответвлений, включенным согласно, добиваются увеличения напряжения, к включенным встречно - понижения. Преимущество такого регулирования состоит в том, что трансформатор при этом не отключают от сети.

Также напряжение можно регулировать при помощи трансформаторов без регулирования под нагрузкой (ПБВ). Однако такой способ приводит к вынужденному отключению от сети, а значит и к перерыву в электроснабжении потребителей, что крайне нежелательно. В связи с этим изменение коэффициента трансформации производят крайне редко, например при сезонном изменении нагрузки. Для них очень важно правильно выбрать коэффициент трансформации таким образом, чтобы режим напряжений при изменениях нагрузок был по возможности наилучшим Поэтому способ регулирования напряжения при помощи ПБВ в данном курсовом проекте не рассматривался.

В отдельных линиях или группе линий для регулирования напряжения пользуются линейными регулировочными (ЛР) и последовательными регулировочными трансформаторами. Так, они применяются при реконструкции уже существующих сетей, в которых используются трансформаторы без регулировки под нагрузкой. В этом случае для регулирования напряжения на шинах подстанции ЛР включаются последовательно с нерегулируемым трансформатором. Для регулирования напряжения на отходящих линиях линейные регуляторы включаются непосредственно в линии.

При помощи трансформаторов с РПН достаточно просто и экономично осуществляется встречное регулирование напряжения на шинах подстанции.

Выбор коэффициентов трансформации двухобмоточных трансформаторов производится в соответствии с принципиальной схемой. Нагрузка трансформатора характеризуется полной мощностью S и коэффициентом мощности cosφ или активной и реактивной мощностью. Трансформатор характеризуется номинальной мощностью Sном. т, номинальными напряжениями регулировочных ответвлений первичной обмотки UномI, номинальным напряжением вторичной обмотки UномII и номинальным коэффициентом трансформации:

Напряжение на первичной стороне трансформатора U1, на вторичной U2.

Допустим, что из расчета или на основании измерений известно напряжение U1 на стороне первичного напряжения трансформатора. Известно также напряжение U2жел, которое желательно иметь на вторичной стороне трансформатора. Требуется выбрать коэффициент трансформации трансформатора или подобрать номинальное напряжение соответствующего регулировочного ответвления на первичной обмотке трансформатора при заданной его нагрузке.

Определяем потерю напряжения ΔUт в трансформаторе, например при приведении к стороне ВН трансформатора. Вычитая ΔUт из U1, получаем напряжение на вторичной стороне трансформатора, приведенное к первичной стороне и соответствующее режиму нагрузок:

Желаемое значение напряжения на вторичной стороне трансформатора

Откуда может быть найдено расчетное значение регулировочного ответвления первичной обмотки:



Заключение

С помощью данных на проект была спроектирована электрическая сеть для электроснабжения пунктов с различной структурой электропотребления и режимом работы.

Зная только взаимное расположение потребителей и их максимальную нагрузку, с учетом значимых требований были составлены 10 вариантов конфигурации сети. Из них были отобраны 4 схемы наиболее рациональные по ряду признаков и произведен их технический анализ.

По суммарной длине трасс ВЛ, количеству выключателей и числу ступеней трансформации были отобраны 2 схемы, которые были оценены по минимуму приведенных затрат. Одна из схем (с минимальными капиталовложениями) была принята к дальнейшей разработке. Были просчитаны максимальный (ручным расчетом и в SDO6), минимальный и послеаварийный (в SDO6) режимы.

На шинах НН с помощью регулирования напряжения было достигнуто желаемое его значение, тем самым обеспечены требования к качеству электроэнергии.

Анализ режимов позволил оценить устойчивость и надежность работы сети в установившихся режимах.

Полученная сеть электроснабжения наиболее рациональна как по экономическим, так и техническим требованиям.


Библиографический список

1.  Блок В.М. Электрические сети и системы. М.: Высшая школа, 1986.

2.  Веников В.А. Регулирование напряжения в электроэнергетических системах / В.А. Веников, В.И. Идельчик, М.С. Лисеев. - М.: Энергоатомиздат, 1985. - 216 с.

3.  Железко Ю.С. Компенсация реактивной мощности и повышение качества электроэнергии: М.: Энергоатомиздат, 1986.

4.  Идельчик В.И. Электрические системы и сети/ В.И. Идельчик. - М.: Энергоатомиздат, 1989. - 592 с.

5.  Неклепаев Б.Н. Электрическая часть электростанций и подстанций / Б.Н. Неклепаев, И.П. Крючков. - М.: Энергоатомиздат, 1989. - 608 с.

6.  Поспелов Г.Е. Электрические системы и сети/ Поспелов Г.Е., Федин В.Т. - Мн. .: Выш. Шк., 1988. - 308 с.

7.  Правила устройства электроустановок: Справочник / С.Г. Королев, А.Ф. Акимкин и др. - М.: Энергоатомиздат, 2001. - 652 с.

8.  Рожков Л.Д. Электрооборудование станций и подстанций/ Л.Д. Рожков, В.С. Козулина. - М.: Энергоатомиздат, 1987. - 648 с.

9.  Савина Н.В. Электрические сети в примерах и расчетах/ Н.В. Савина, Ю.В. Мясоедов, Л.Н. Дудченко. - Благовещенск: Издательство АмГУ, 1999. - 238 с.

10.  Справочник по проектированию электроэнергетических систем: Справочник / С.С. Рокотян, И.М. Шапиро и др. - М.: Энергия, 1977. - 288 с.

11.  Файбисович Д.Л. Укрупненные стоимостные показатели электрических сетей 35 - 1150 кВ/ Файбисович Д.Л., Карапетян И.Г. - М.: Фолиум, 2003.

12.  Экономика промышленности т.2: Учебник /, А.Б. Кожевников и др. - М.: Экономика, 2001 350 с.

13.  Электротехнический справочник: Справочник / под общ. ред.В.Г. Герасимов и др. - М.: Издательство МЭИ, 2002. - 964 с.


Информация о работе «Проектирование районной электрической сети»
Раздел: Физика
Количество знаков с пробелами: 71863
Количество таблиц: 24
Количество изображений: 6

Похожие работы

Скачать
101980
40
8

... (5.2), где - ударный коэффициент, который составляет (табл.5.1). Расчёт ТКЗ выполняется для наиболее экономичного варианта развития электрической сети (вариантI рис.2.1) с установкой на подстанции 10 двух трансформаторов ТРДН-25000/110. Схема замещения сети для расчёта ТКЗ приведена на рис. 5.1. Синхронные генераторы в схеме представлены сверхпереходными ЭДС и сопротивлением  (для блоков 200МВт ...

Скачать
65776
21
6

... как следствие к увеличению затрат на сооружение сети, повышенным потерям активной мощности. ·  Недостаток реактивной мощности в системе влечет за собой снижение напряжения в узлах электрических сетей и у потребителей. На основе специальных расчетов распределения реактивной мощности в электроэнергетической системе, для каждого узла системы определяется реактивная мощность, которую целесообразно ...

Скачать
131188
33
7

... электрических соединений на всех напряжениях переменного постоянного тока для нормальных режимов. Такие схемы должны обеспечивать сочетание максимальной надежности и экономичности электроснабжения потребителей. Переключения в электрических схемах распредустройств подстанций, счетов и зборок должны производится по распоряжению или с ведома вышестоящего дежурного персонала (или старшего электрика ...

Скачать
33033
8
3

... схеме замещения соответствующими изменением коэффициента мощности. 3.3 Электрический расчет 3.3.1 Расчет режима максимальных нагрузок Расчет режима максимальных нагрузок. Районная электрическая сеть имеет один источник питания – системную подстанцию. Электрический расчет проводит для случая, когда на шинах ВН источника питания поддерживается напряжение U=1,15Uн и известна максимальная ...

0 комментариев


Наверх