Войти на сайт

или
Регистрация

Навигация


Решение систем нелинейных алгебраических уравнений методом Ньютона

4486
знаков
0
таблиц
0
изображений

Решение систем нелинейных алгебраических уравнений методом Ньютона


РЕФЕРАТ

Пояснительная записка: 44 с., 14 рис, 2 таблицы, 3 источника, 4 прил.

Данный продукт представляет собой программу, позволяющую решать СНАУ:

F1(X1, X2, X3)=0,5arctg(X1+X2)+0,2ln(1+X21+ X22+X23)-0,05(X1X2-X1X3-X2X3)+85X1-20X2+35X3-99;

F2(X1, X2, X3)=5arctg(X1+X2+X3)-25,5X1+19,5X2-15,5X3+15;

F3(X1, X2, X3)=-0,3cos(X1-2X2+X3)+0,5exp(-0,25(X21+X22+X23-3))-44,75X1 +20,25X2+5,25X3+18.

Модифицированным методом Ньютона при заданных начальных условиях, где задаётся погрешность вычисления. Кроме вычисления корня уравнения, существует возможность построения графика зависимости приближений двух координат решения. При построении графика задаются промежутки и константы. Программа может использоваться как наглядное пособие для студентов высших учебных заведений.

В программе реализуются:

1) работа с BGI графикой;

2) работа с файлами.


СОДЕРЖАНИЕ

Введение

1. Постановка задачи

1.1. Цель создания программного продукта

1.2. Постановка задачи

2. Математическая модель

3. Описание и обоснование выбора метода решения

4. Обоснование выбора языка программирования

5. Описание программной реализации


1 ПОСТАНОВКА ЗАДАЧИ

 

1.1      Цель создания программного продукта

 

Главной целью работы является разработка программы способной решать СНАУ трёх переменных модифицированным методом Ньютона, что должно являться пособием для студентов высших учебных заведений в снижении ненужной нагрузки, связанной с многочисленными массивами вычислений.

 

1.2 Постановка задачи

В данном программном продукте необходимо реализовать решение СНАУ:

0,5arctg(X1+X2)+0,2ln(1+X21+ X22+X23)-0,05(X1X2-X1X3-X2X3)+85X1-

-20X2+35X3-99;

5arctg(X1+X2+X3)-25,5X1+19,5X2-15,5X3+15;

-0,3cos(X1-2X2+X3)+0,5exp(-0,25(X21+X22+X23-3))-44,75X1+20,25X2+

+5,25X3+18.

Начальным приближением (X0) должны служить X1,0=0, X2,0=0, X3,0=0. Необходимо ввести точность (ξ) вычисления корня системы уравнений, ограниченную размером (не менее 0,00001). После вычислений с заданной погрешностью возникает множество приближений к корню, последнее из которых будет считаться корнем. После нахождения корня СНАУ и приближений к нему, необходимо построить график зависимости двух любых компонент решения (например, X1 и X3). Для этого третья компонента решения (X3) принимает значение константы. Необходимо указать какая функция будет участвовать в построении графика (например, F1), а также определить промежутки изменения обеих компонент решения (например, [X1min; X1max] и [X3min; X3max]).


2 МАТЕМЕТИЧЕСКАЯ МОДЕЛЬ

Общий вид решения системы нелинейных арифметических уравнений имеет вид:

F1(X1,…,Xn)=0

Fn(X1,…,Xn)=0

, где Fi – функция n переменных. Решением СНАУ является вектор X=(X1,…,Xn), при подстановке компонент которого в систему каждое её уравнение обращается в верное равенство. При n=3 – точка пересечения трёх поверхностей. Модифицированный метод Ньютона – один из методов, применяющихся для нахождения корня СНАУ. Модифицированный метод Ньютона предполагает наличие начального приближения X0. Суть метода заключается в построении последовательности точек X0, …, Xn, сходящихся к решению. Рекуррентная формула имеет вид: Xk+1=Xk+W(X0)-1F(Xk), где W(X0)-1 – обратная матрица частных производных уравнений системы уравнений (якобиан I-1) от начального приближения X0, а F(Xk) – вектор значений функций СНАУ вектора приближения к корню X, высчитанном, на предыдущем шаге. Условием окончания выполнения приближений является шаг, на котором k-норма (в данном случае), т.е √F22(Xn+1)+ F22(Xn+1)+ F22(Xn+1), меньше определённой погрешности (ξ): √F22(Xn+1)+ F22(Xn+1)+ F22(Xn+1) < ξ.
3 ОПИСАНИЕ И ОБОСНОВАНИЕ ВЫБОРА МЕТОДА РЕШЕНИЯ

Для решения СНАУ был выбран один из численных методов, который называется модифицированным методом Ньютона.

По сравнению с методом Ньютона модифицированный метод Ньютона сходится дольше, но имеет более простой алгоритм реализации, следовательно, проще реализуем программно на языке программирования.


4 ОБОСНОВАНИЕ ВЫБОРА ЯЗЫКА ПРОГРАММИРОВАНИЯ

Реализация поставленной задачи совершается на языке программирования Borland C++ version 3.1.

Система программирования Borland C++, разработанная американской корпорацией Borland, остаётся одной из самых популярных систем программирования в мире. Этому способствует простота лежащая в основе языка программирования C, а также поддержка графического и текстового режимов, что делает Borland C удачным выбором для реализации практически любого программного продукта.


Информация о работе «Решение систем нелинейных алгебраических уравнений методом Ньютона»
Раздел: Информатика, программирование
Количество знаков с пробелами: 4486
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
14674
0
13

... 1040, мы все еще получаем сходимость, при количестве итераций порядка 130.   4 Анализ результатов, выводы Целью нашего исследование было сравнение методов простой итерации и Ньютона для решения систем из двух нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Зависимость этих параметров от выбора начального ...

Скачать
35539
6
3

... вычисляют в следующем порядке: xjn, xjn–1, …, xj1. 3. Метод Зейделя 3.2.1. Приведение системы к виду, удобному для итераций. Для того чтобы применить метод Зейделя к решению системы линейных алгебраических уравнений Ax = b   с квадратной невырожденной матрицей A, необходимо предварительно преобразовать эту систему к виду x = Bx + c. Здесь B – квадратная матрица с элементами bij (i, ...

Скачать
37732
2
12

... - функции f. Дальше, имеем: . Отсюда , где W'(x) - транспонированная матрица Якоби. Поэтому окончательно , причем . 3. Программная реализация итерационных методов Реализация алгоритмов итерационных методов решения систем нелинейных уравнений будет показана на примере системы: 3.1 Метод простых итераций Приведём систему к виду: Проверим условие ...

Скачать
38687
3
48

... 35437 x4=0.58554 5 x1=1.3179137 x2=-1.59467 x3=0.35371 x4=0.58462 6 x1=1.3181515 x2=-1.59506 x3=0.35455 x4=0.58557 5. Сравнительный анализ различных методов численного дифференцирования и интегрирования 5.1 Методы численного дифференцирования 5.1.1 Описание метода Предположим, что в окрестности точки xiфункция F (x) дифференцируема достаточное число раз. ...

0 комментариев


Наверх