Войти на сайт

или
Регистрация

Навигация


Введення

Рішення деяких задач комп'ютерної безпеки засноване на обмеженні доступу програмного коду до різного роду ресурсів, зокрема, мережевих ресурсів і файлової системи. Надавши доступ до цих ресурсів лише окремим довіреною програмами, можна гарантувати (при додатковому контролі цілісності цих програм) виконання важливих вимог з безпеки, серед яких слід зазначити запобігання витоку критично важливої інформації через різні канали передачі даних: мережеве з'єднання, переносні (USB) накопичувачі та ін.

Сучасні операційні системи (ОС) надають широкі можливості з управління доступом процесів до ресурсів комп'ютера. Однак недостатня надійність масових ОС (таких як Windows, Linux та ін.) [1] робить актуальним завдання розробки незалежних від ОС (ортогональних до неї) програмних засобів захисту інформації. Такі засоби захисту можуть бути реалізовані з використанням технології апаратної віртуалізації, коли захищається система виконується в апаратній віртуальній машині (ВМ), а система захисту розміщується в тілі монітора віртуальних машин (також званого гіпервізор) [2,4]. Функціонування гіпервізора на більш високому апаратному рівні привілеїв дозволяє повністю контролювати виконання як коду ОС, так і призначених для користувача програм, залишаючись при цьому апаратно захищеним від шкідливого впливу з боку коду в ВМ, у тому числі, коду, що виконується в привілейованому режимі.

Користувальницький процес в сучасних ОС не має прямого доступу до апаратних ресурсів; операційна система являє процесу деяку абстрактну модель апаратного забезпечення, взаємодія з якою здійснюється за допомогою набору операцій – системних викликів (СВ). Зокрема, для встановлення мережевого з'єднання з віддаленим комп'ютером і передачі йому даних процесу необхідно виконати в заданому порядку кілька цілком певних системних викликів (socket, connect, send і т. п.).

У наших роботах [2,3] було показано, як за допомогою поділу повноважень з обслуговування ресурсів між віртуальними машинами і делегування обслуговування системних викликів від однієї віртуальної машини іншої можуть бути вирішені деякі задачі комп'ютерної безпеки. Запропоновані рішення в цілому базуються на схемі, зображеній на рисунку 1. Гіпервізор забезпечує одночасне виконання двох ізольованих один від одного віртуальних машин. Обидві ВМ працюють під управлінням однієї і тієї ж операційної системи. Перша ВМ – обчислювальна – є основною. Користувач може працювати з нею в діалоговому режимі.

Обладнання, через яке здійснюється доступ до контрольованих ресурсів (ресурси мережі Інтернет на рис. 1), фізично відключається гіпервізор від обчислювальної ВМ. Це обладнання управляється другий – сервісної – віртуальною машиною, яка, взагалі кажучи, може виконуватися прихованим для користувача чином у фоновому режимі. Системні виклики окремих (довірених) процесів перехоплюються гіпервізор, і ті з них, які відносяться до контрольованих ресурсів, передаються на обслуговування (обслуговуються віддалено) в сервісну ВМ. Зауважимо, що обслуговування цих викликів всередині обчислювальної ВМ неминуче призведе до помилки через відсутність у неї можливостей (обладнання) здійснити доступ до відповідних ресурсів. Решта системні виклики довірених процесів, а також всі системні виклики інших процесів, обслуговуються засобами ОС в обчислювальній ВМ.

Рисунок 1. Делегування системних викликів другий віртуальній машині


При перехопленні системного виклику гіпервізор може проконтролювати допустимість контексту, з якого виконується запит на системний виклик, тобто чи дозволений даному процесу доступ до такої категорії ресурсів, і виконувати віддалене обслуговування виклику тільки у випадку успішного проходження перевірки. Аналізуючи параметри виклику, гіпервізор може також здійснювати більш тонкий контроль доступу до ресурсу, наприклад, дозволяти мережевий доступ тільки до обмеженого числа комп'ютерів в мережі, що мають задані адреси.

У даній роботі описується архітектура і деталі реалізації механізму віддаленого виконання системних викликів, що використовується в системі безпеки, яка представлена в роботі [3]. У ній контрольованими ресурсами є виключно ресурси мережі Інтернет. Як наслідок, реалізація, що розглядається в даній роботі, допускає віддалене обслуговування тільки тих системних викликів, які можуть бути використані при мережевому взаємодії через сокети. Однак, враховуючи спільність подання сокетів і файлів для користувацького процесу у вигляді дескрипторів файлів і, як наслідок, спільність багатьох системних викликів, аналізований механізм в цілому придатний також для тих сценаріїв, коли контрольованим ресурсом є файлова система.

Окремі компоненти системи, що розглядається у даній роботі, можуть також використовуватися для ефективного вирішення тих завдань, в яких потрібно виконувати трасування системних викликів. Справа в тому, що штатні механізми трасування в ОС Linux (ptrace) базуються на сигналах, що посилаються ядром ОС процесу-монітора (відладчик) при виконанні відлагоджує процесом системного виклику, що призводить до частого перемикання контексту процесів (монітора і трасуванню процесу). Крім того, читання даних з адресного простору трасуванню процесу можливе тільки порціями по 4 байти. Розміщення монітора процесів на рівні гіпервізора дозволяє усунути вказані обмеження.

Завдання віддаленого виконання системних викликів розглядається також в рамках проекту VirtualSquare [6]. Відмінність запропонованого нами підходу полягає у використанні технології апаратної віртуалізації для перехоплення системних викликів. Крім того, в роботі [6] підмножина системних викликів, виконуваних віддалено, задається жорстко, у той час як у нашому підході рішення про віддалений виконання системного виклику приймається, виходячи з дескриптора ресурсу, до якого звертається процес. У ряді випадків системний виклик треба одночасно виконувати в обох системах (локальної та дистанційної) з наступним об'єднанням результатів, і це питання також розглянуто в даній роботі.

Механізм віддаленого виконання системних викликів близька механізму віддаленого виконання процедур [7], широко вживаному в розподілених програмних системах, зокрема, в мережевої файлової системи NFS [8]. Принципова відмінність пропонованого нами рішення полягає у відсутності необхідності модифікації (в тому числі, перекомпіляції) коду програми і операційної системи для обслуговування системних викликів в іншій системі.

Стаття організована наступним чином. У розділі 2 представлено короткий огляд технології апаратної віртуалізації і викладена загальна архітектура системи та її компонент. У розділі 3 детально розглянуті принципи роботи системи і обробка різних сценаріїв доступу до ресурсів. У розділі 4 представлені результати аналізу продуктивності системи як на синтетичних тестах, так і на реальних додатках. У розділі 5 підводяться підсумки роботи.



Информация о работе «Механізм обслуговування системних викликів»
Раздел: Информатика, программирование
Количество знаков с пробелами: 46640
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
24912
0
12

... WRR) і його модифікації; - кругове обслуговування з дефіцитом (Deficit Round-Robin, DRR) і його модифікації. Рисунок 1 – Класифікація механізмів обслуговування черг   2. Механізм обслуговування черг FIFO обслуговування алгоритм черга комутатор FIFO (First In – First Out, "першим прийшов – першим пішов") є найпростішим механізмом обслуговування черг, відповідно до якого пакети передаються ...

Скачать
36562
0
0

... допомогою програм пакету ResourseKit фірми Microsoft. Увага! Будь-яке некваліфіковане втручання в структуру системного реєстру може призвести до краху всієї системи. Якщо ви адмініструєте сервер, чи робочу станцію на основі Win9x/nt/2000 , то системний реєстр допоможе вам підвищити рівень безпеки та ефективності вашої системи . Однак, кожен раз запускати редактор реєстру і шукати потрібні ключі , ...

Скачать
85276
0
11

... RTOS складається з ядра, планувальника процесів (process manager) і розширених сервісів на рівні користувача. Як справжня мікроядерного операційна система, QNX Neutrino RTOS реалізує в ядрі ОС тільки найбільш фундаментальні сервіси, такі як передача повідомлень, сигнали, таймери, планування потоків, об'єкти синхронізації. Всі інші сервіси ОС, драйвери та програми виконуються як окремі процеси, які ...

Скачать
205269
13
4

... своєчасне виявлення відхилень від прийнятих стандартів і цілей кредитної політики банку. Кредитний моніторинг є одним із важливих елементів удосконалення механізму здійснення кредитних операцій. Контроль за ходом погашення позички і виплатою відсотків по ній служить важливим етапом усього процесу кредитування. Він полягає в періодичному аналізі кредитного досьє позичальника, перегляді кредитного ...

0 комментариев


Наверх