Ионообменная хроматография вредных веществ в анализе объектов окружающей среды

43585
знаков
1
таблица
8
изображений

Курсовая работа

На тему

«Ионообменная хроматография вредных веществ в анализе объектов окружающей среды»


Содержание

Введение

Глава 1. Теоретические основы ионной хроматографии

1.1.Разделение анионов методом одноколоночной ИХ

Глава 2. Примеры использования ионообменной хроматографии в анализе объектов окружающей среды

Глава 3. Аппаратурное оформление

Литература


ВВЕДЕНИЕ

Аналитическое применение ионнобменных процессов чрезвычайно разнообразно. Они используются в качественном и количественном анализе как вспомогательные операции в самых различных целях.

Наиболее обширной областью использования ионообменных процессов следует считать хроматографическое разделение смеси ионов, а также ионообменный хроматографический анализ металлов и сплавов.

Важное значение ионообменные процессы имеют при аналитическом определении следов веществ в современном ультрамикроанализе.

Ионообменные процессы позволяют изучать многие свойства ионов в растворе, а также определять концентрацию растворов, влажность вещества и другие важные характеристики.


ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИОННОЙ ХРОМАТОГРАФИИ

Ионообменная хроматография - это метод разделения веществ по их способности мигрировать по ионообменной колонке или по пластине, покрытой ионообменником. Ионы разделяются в результате ионообменных реакций, характерных для каждого типа ионов.[1] “Высокоэффективное” разделение достигается при использовании колонок сравнительно небольшого диаметра, заполненных однородными мелкими частицами сорбента, введении проб малого объёма, постоянном потоке элюента (подаваемого насосом) и автоматическом детектировании разделённых компонентов пробы. В 1975 году Смолл, Стивенс и Бауман предложили использовать автоматическое кондуктометрическое детектирование.

Существуют два основных метода ионной хроматографии с кондуктометрическим детектированием. Первый из них был предложен Смоллом и сотрудниками и представляет собой двухколоночный метод. Второй, разработанный Гьеде, Фритцем и Шмуклером, является одноколоночным. Тщательный подбор разделяющей колонки и элюентов позволяет исключить компенсационную колонку. В обоих вариантах ионной хроматографии генерируется фоновый сигнал, который необходимо компенсировать электрически.

Для современной ионной хроматографии используются смолы с постоянным размером частиц в пределах 5-50мкм. Ионообменники представляют собой либо органические смолы с частицами сферической формы, либо пористый силикагель, с которым химически связана ионообменная фаза.

Колонки имеют длину 250-1000мм и внутренний диаметр 5-2мм. Для уменьшения размывания пиков в современных системах применяют соединительные трубки малого диаметра (0,3мм). В высокоэффективной хроматографии объём пробы невелик (10-100мкл). Это позволяет получить гораздо более узкие пики и улучшить качество разделения.

Наиболее важным аспектом современной ионообменной хроматографии является применение систем автоматического детектирования, обеспечивающих непрерывную запись сигнала самописцем. В настоящее время датчиками для ионообменной хроматографии являются спектрофотометрические, электрохимические детекторы и детекторы электропроводности.

Детекторы:

Для регистрации ионообменного разделения наиболее распространён кондуктометрический способ детектирования. Кондуктометрические детекторы измеряют проводимость раствора. Проводимость измеряется в обратных омах (Ом-1), и она пропорциональна числу ионов в растворе и их подвижности, причём каждый ион имеет присущую только ему подвижность. Детекторы обеспечивают непрерывную регистрацию концентрации анализируемых ионов в элюате в присутствии ионов элюента. Причём, детектор должен быть согласован как с элюентом, так и с анализируемыми ионами, то есть он должен реагировать на анализируемые ионы, но не на ионы элюента. Кондуктометрические детекторы относятся к универсальным, то есть они реагируют на все ионы, находящиеся в растворе. В основу этих детекторов положены следующие закономерности:

Электропроводность- способность раствора электролита проводить электрический ток между двумя электродами, к которым приложено электрическое напряжение.

Этот процесс подчиняется закону Ома: U=I*R, согласно которому ток пропорционален приложенному напряжению. Электропроводность раствора есть величина, обратная его сопротивлению, и измеряется в обратных омах.(G=1/R)

Удельная проводимость есть: k=(G*l)/A, где A-площадь электродов (см2), а l-расстояние между электродами. Поэтому k имеет размерность (Ом-1*см-1).

Величина K, называемая постоянной ячейки, выражается следующим соотношением: K=G /A. Из двух предыдущих выражений следует, что k=G*K. (I) Величина G , называемая эквивалентной электропроводностью, связывается с концентрацией вещества в растворе и выражается как G =(1000*k)/C (II), где C-концентрация в эквивалентах на 1000см3. Детектор электропроводности состоит из ячейки, в которую подаётся анализируемый раствор, индикатора и электрической схемы для измерения проводимости и изменения чувствительности. Индикатор градуируется в Ом-1 или мкОм-1. Удельную электропроводность можно вычислить, если известны параметры ячейки. Однако на практике измеряют проводимость разбавленного раствора с известной удельной электропроводностью и вычисляют постоянную ячейки по уравнению. И, если постоянная ячейки известна. То, измерив G, можно рассчитать удельную электропроводность других растворов. По табличным значениям электропроводности и уравнению (III) для кондуктометрического детектора с известной постоянной ячейки можно вычислить электропроводность различных растворов с заданной концентрацией.

Принцип работы ячейки:

Если к двум электродам, находящимся в растворе электролита, приложено электрическое напряжение, то анионы в растворе будут двигаться к аноду, а катионы - к катоду. Число ионов и скорость их движения будет определяться электропроводностью раствора. Подвижность ионов зависит от заряда и размера иона, температуры, типа среды и концентрации ионов. Скорость движения ионов зависит от величины приложенного напряжения, которое в свою очередь может быть постоянным, либо переменным синусоидальной или прямоугольной импульсной формы. Поведение ионов может вызвать изменение эффективного приложенного напряжения. Помимо электролитического сопротивления, может появляться емкостное сопротивление двойного слоя, или фарадеев импеданс. Влияние этих электродных процессов можно устранить путём подачи на электроды переменного напряжения. При изменении знака приложенного напряжения меняются характер электролиза, направление перемещения ионов и характер образования емкостного сопротивления. По мере увеличения частоты влияние электролиза снижается или совсем устраняется и ток в растворе определяется емкостным сопротивлением. Верхний предел частот соответствует примерно 1МГц. На электроды ячеек некоторых детекторов подают напряжение синусоидальной формы частотой 10-10000 Гц. Детектор фирмы Wescan, например, работает на частоте 10кГц при напряжении 20 В [1]. В этом устройстве используется фазочувствительное детектирование, то есть измеряется только та составляющая тока, которая находится в фазе с приложенным напряжением. В других детекторах используется метод биполярной импульсной проводимости [1]. Этот метод состоит в последовательной подаче на ячейку двух импульсов напряжения малой длительности. Импульсы имеют противоположную полярность, но одинаковы по амплитуде и длительности. Ток в ячейке измеряют сразу же по окончании второго импульса и определяют сопротивление ячейки, исходя из закона Ома. Этот импульсный способ питания предотвращает электролиз. Так как при биполярном импульсном питании в ячейке измеряют величину мгновенного тока, то емкостное сопротивление не оказывает влияния на измерения, и этот метод позволяет точно определить сопротивление ячейки. [3-7]

В первых кондуктометрах применялись платиновые электроды, покрытые платиновой чернью. Эти электроды имеют низкое сопротивление поляризации и высокую емкость. Но поток жидкости смывает покрытие с электродов и изменяет их характеристики. В ячейках современных детекторов используют электроды из нержавеющей стали, марки 316. Для “дезактивации” новой ячейки её промывают 50%-ным раствором HNO3. Так как подвижность ионов меняется с температурой, то электропроводность большинства растворов ионов возрастает примерно на 2% при увеличении температуры на 1 С. Поэтому ячейку детектора нужно изолировать, чтобы предотвратить случайные колебания её температуры. Все кондуктометрические детекторы должны включать какие-либо средства компенсации фонового сигнала, который может на три порядка величины превышать сигнал от образца.

В качестве ионообменников или ионитов обычно используют синтетические полимерные вещества, называемые ионообменными смолами. Они состоят из матрицы (R) и активных групп, содержащих подвижные ионы. В зависимости от знака обмениваемых ионов различают катиониты и аниониты. Катиониты содержат кислотные группы различной силы, такие как сульфогруппы, карбоксильные, оксифенильные. Аниониты имеют в своем составе основные группы, например алифатические или ароматические аминогруппы различной степени замещенности (вплоть до четвертичных).

Иониты могут находиться в Н-форме и ОН - форме, а также в солевой форме. В Н-форме катиониты и ОН- форме аниониты содержат способные к обмену ионы водорода и гидроксила соответственно, в солевых формах ионы водорода заменены катионами металла, анионы гидроксила - анионами кислот.

В зависимости от силы кислотных и основных групп в ионитах различают сильнокислотные (R-SOзН) и слабокислотные (R-СООН) катиониты; сильноосновные (R-N(СНз)зОН) и слабоосновные (R-NНзОН).

Сильнокислотные и сильноосновные иониты способны к ионному обмену в широком диапазоне рН.

Процесс ионного обмена протекает стехиометрично. Например:

R-SO3H+Na+=RSO3Na+H+

R(NНз)зОН+Сl-=R(NНз)зСl+ОН-

Это ионообменное равновесие характеризуется константой ионного обмена:

[H+][RSO3Na] [OH-][RN(CH3)3Cl

KH+/Na+=______________; KOH-/Cl-= _________________

[Na+][RSO3H] [Cl-][RN(CN3)3OH]

На основании констант ионного обмена построены ряды сродства ионов к данному иониту, позволяющие предвидеть возможности ионообменных разделений.

В зависимости от сродства к фиксированным ионам неподвижной фазы разделяемые ионы перемещаются вдоль хроматографической колонки с различными скоростями; чем выше сродство, тем больше объем удерживания компонента. При разделении органических кислот и оснований важную роль играет степень их диссоциации.

Например, константы ионного обмена солей железа (III) и кобальта (II) на сильнокислотном катионите марки КУ-2 составляют 3726 и 286 соответственно.

Важной количественной характеристикой ионитов является их обменная емкость. Полная обменная емкость определяется количеством эквивалентов ионов, обмениваемых одним граммом сухого ионита. Чем больше обменная емкость, тем большую пробу можно ввести в колонку с ионитом.

При подготовке ионитов к работе их переводят в соответствующую форму. Так, для перевода катионита в Н-форму через колонку с набухшим ионитом пропускают раствор сильной кислоты, избыток которой отмывают водой. Затем медленно пропускают раствор смеси ионов. Каждый катион задерживается на ионите согласно своей сорбируемости. Далее пропускают подходящий элюент. Например, катионы щелочных металлов легко элюируются 0,1 М HCl. При этом ионы водорода обмениваются на сорбированные катионы, которые вместе с раствором выходят из колонки в соответствии с константами ионного обмена. На выходе из колонки фракции собирают в отдельные сосуды и определяют содержание любым подходящим методом.

Иониты применяются для деионизации (обессоливания) воды, очистки сахарных сиропов от минеральных солей; в препаративной химии - для концентрирования растворов; для определения ионов железа (III), меди и свинца в вине; кальция и магния в молоке; различных металлов в биологических жидкостях. Кроме того, ионный обмен используют для перевода ионов в форму, удобную для количественного определения. Например, поваренную соль в рассоле можно определить, пропустив пробу через колонку с катионитом, и выделившуюся в эквивалентном количестве кислоту оттитровать щелочью:

R-SOзН+NaCI=R-SOзNa+НСl.

Ионообменную хроматографию применяют для разделения фенолов, карбоновых кислот, аминосахаров, пуриновых, пиримидиновых и других оснований. Часто иониты используют для предварительного разделения сложных смесей на менее сложные. На ионном обмене основано получение ионитного молока для детского питания. Ионный обмен используют для очистки натуральных соков от ионов тяжелых металлов. Ионообменные смолы применяют для получения ионообменных мембран.

Ионообменная хроматография. В качестве неподвижной фазы используют ионообменные смолы (рис. 4) как в колонках, так и в виде тонкого слоя на пластинке или бумаге. Разделение обычно проводят в водных средах, поэтому этот метод используется главным образом в неорганической химии, хотя применяются и смешанные растворители. Движущей силой разделения в этом случае является различное сродство разделяемых ионов раствора к ионообменным центрам противоположной полярности в неподвижной фазе.[8-11]

Рис.4. Изображение структуры частицы ионообменной смолы:  – заряженные функциональные группы, ковалентно связанные с нитями решетки; – свободно перемещающиеся противоположно заряженные протовоионы, электростатически связанные с частицей


Информация о работе «Ионообменная хроматография вредных веществ в анализе объектов окружающей среды»
Раздел: Экология
Количество знаков с пробелами: 43585
Количество таблиц: 1
Количество изображений: 8

Похожие работы

Скачать
60151
0
26

... . Комбинированные методы дают дополняющую друг друга информацию, позволяющую произвести правильную идентификации веществ, которые не могут быть опознаны с помощью какого- либо одного метода.[11-12] Глава 3. Примеры применения хроматографии в анализе объектов окружающей среды   Анализ состояния водной среды с помощью метода газовой хроматографии[13-15] Метод газовой хроматографии для анализа ...

Скачать
56116
1
5

... щелочноземельных элементов и магния методом ионной высокоэффективной жидкостной хроматографии Разработка и совершенствование методов, позволяющих решать задачи анализа вод- важная проблема аналитической химии. Развитие высокоэффективной жидкостной хроматографии высокого давления стимулировало развитие нового направления в ионообменной хроматографии- так называемой ионной хроматографии. Синтез ...

Скачать
35238
2
0

... до молекулярного уровня, делая реальным полностью автоматизированные , со всеобъемлющим программным обеспечением, сложные многоцелевые и в то же время компактные, полностью автономные системы слежения за качеством окружающей среды в замкнутом пространстве. Экологические принципы, лежащие в основе конструирования,изготовления и эксплуатации ЛА. Самолет, как и любая система, использующая энергию ...

Скачать
79814
5
6

... и 2 чашек Петри, вставленных одна в другую для антикруговой ТСХ. Для увеличения пиковой емкости в ТСХ используют методы проточной, многократной, градиентной и двумерной ТСХ. [1] Глава 2. Контроль качества пищевых продуктов посредством метода ТСХ   2.1 Определение ддт, ддэ, ддд, альдрина, дильдрина, гептахлора, кельтана, метоксихлора, эфирсульфоната и других ядохимикатов в продуктах питания ...

0 комментариев


Наверх