Теория вероятностей и математическая статистика

10789
знаков
25
таблиц
3
изображения

Министерство высшего образования Украины

Национальный Технический Университет Украины

“Киевский политехнический институт”

Кафедра автоматизированных систем обработки информации и управления

К о н т р о л ь н а я р а б о т а

по дисциплине :

“ Теория вероятностей и математическая статистика”

Вариант № 24

Выполнил студент гр. ЗІС - 91

ІІI курса факультета ФИВТ

Луцько Виктор Степанович

2009г.


Задача 1

Бросаются две игральные кости. Определить вероятность того, что:

а) сумма числа очков не превосходит N;

б) произведение числа очков не превосходит N;

в) произведение числа очков делится на N.

Исходные данные: N=18.

Решение задачи:

Вероятностью случайного события А называется отношение числа равновозможных элементарных событий, благоприятствующих этому событию, к числу всех равновозможных элементарных событий пространства Е, определяемого данным испытанием.

Р(А) = m
n

где: n – число всех равновозможных элементарных событий, вытекающих из условий данного испытания;

m - число равновозможных событий, которые благоприятствуют событию А.

а) при сумме числа очков (N = 18), не превосходящих N:

n = 36;m = 36

Р(А) = 36 = 1 ;
36

б) при произведении числа очков, не превосходящих N:

n = 28;m = 36

Р(А) = 28 = 7 » 0,778 ;
36 9

в) при произведении числа очков, делящихся на N:

n = 3;m = 36

Р(А) = 3 = 1 » 0,083 .
36 12

Ответы:

а) Р(А) = 1 ;

б) Р(А) = 7/9 » 0,778 ;

в) Р(А) = 1/12 » 0,083.

Задача 2

Имеются изделия четырех сортов, причем число изделий i-го сорта равно =1, 2, 3, 4. Для контроля наудачу берутся т изделий. Определить вероятность того, что среди них т1 первосортных, т2, т3 и т4 второго, третьего и четвертого сорта соответственно .

Исходные данные: n1 = 3; n2 = 1; n3 = 6; n4 = 2;m1 = 2; m2 = 1; m3 = 3; m4 = 1.

Решение задачи.

1)         Определяем количество способов нужной комбинации:

С¢ = Сn1m1 x Сn2m2 x Сn3m3 x Сn4m4 = С32 x С11 x С63 x С21 ;

2)         Определяем количество всех возможных способов:

С¢¢ = Сn1+n2+n3+n4m1+m2+m3+m4 = С127 ;


3) Определяем вероятность Р согласно условия задачи:

Р =

С32 x С11 x С63 x С21

= 3 х 1 х 4 х 5 х 6 х 2 =
2 х 3

С127

8 х 9 х 10 х 11 х 12
2 х 3 х 4 х 5
= 3 х 5 = 5 » 0,15
9 х 11 33

Ответ: Р = 5/33 » 0,15 .

Задача 3

Среди п лотерейных билетов k выигрышных. Наудачу взяли т билетов. Определить вероятность того, что среди них  выигрышных.

Исходные данные: n = 8; l = 3; m = 5; k = 4.

Решение задачи.

k=4

 

n=8

 

Общее число случаев, очевидно, равно Сnm , число благоприятных случаев Сkl x Сn-km-l , откуда:

Р(А) =

Сkl x Сn-km-l

=

С43 x С8-45-3

= 3 » 0, 4286 .

Сnm

С85

7
Ответ: Р(А) = 3/7 » 0, 4286 . Задача 7

В круге радиуса R наудачу появляется точка. Определить вероятность того, что она попадает в одну из двух непересекающихся фигур, площади которых равны S1 и S2. Исходные данные:R =14; S1 = 2,6; S2 = 5,6.

Решение задачи

S1

 

R

 

 

P(A) = S

.

S2

 

pR2

P(A1) =

S1 = 2,6 » 0,0042246 ;

pR2

3,14 x 142

P(A2) =

S2 = 5,6 » 0,0090991 ;

pR2

3,14 x 142

P(A) = S1+ S2 = 2,6 + 5,6 = 8,2 » 0,013324 .

pR2

3,14 x 142

615,44

Ответ: Р(А) » 0,013324 .


Задача 8

В двух партиях k1 и k2 % доброкачественных изделий соответственно. Наудачу выбирают по одному изделию из каждой партии. Какова вероятность обнаружить среди них:

а) хотя бы одно бракованное;

б) два бракованных;

в) одно доброкачественное и одно бракованное?

Исходные данные: k1 = 81; k2 = 37.

Решение задачи

События А и В называются независимыми, если выполняется соотношение:

Р(А/В) = Р(А) / Р(В) .

Для любых событий А и В имеет место формула:

Р(А+В) = Р(А) + Р(В) – Р(АВ) .

Обозначения:

Событие А – выбрали бракованное изделие из 1-й партии (1 – k1) ;

Событие B – выбрали бракованное изделие из 2-й партии (1 – k2) .

События А и В – независимые.

а) Р(А+В) = Р(А) + Р(В) – Р(АВ) = (1 – k1) + (1 – k2) – (1 – k1)(1 – k2) =

= 0,19 + 0,63 – 0,19 х 0,63 » 0,82 – 0,12 » 0,70 .

б) Вероятность пересечения двух независимых событий равна произведению вероятностей этих событий:


Р(АÇВ) = Р(А) х Р(В) = (1 – k1)(1 – k2) = 0,19 х 0,63 » 0,12 .

в) Р = Р(А) х Р(В) + Р(В) х Р(А) = (1 – k1)k2 + (1 – k2)k1 =

= 0,19 х 0,37 + 0,63 x 0,81 » 0,07 + 0,51 » 0,58 .

Ответы:

а) » 0,70;

б)» 0,12;

в)» 0,58.

Задача 9

Вероятность того, что цель поражена при одном выстреле первым стрелком р1 вторым — р2 . Первый сделал n1, второй — n2 выстрелов. Определить вероятность того, что цель не поражена.

Исходные данные: p1 = 0,33; p2 = 0,52; n1 = 3; n2 = 2.

Решение задачи.

Обозначения:

А – вероятность непоражения цели при одном выстреле первым стрелком (1 – р1) ;

В – вероятность непоражения цели при одном выстреле вторым стрелком (1 – р2) ;

Р – цель не поражена в результате общего количества испытаний.

Р = (1 – р1)n1 x (1 – р2)n2 = (1 – 0,33)3 x (1 – 0,52)2 = 0,673 x 0,482 » 0,30 x 0,23 » 0,069 » 0,07 .

Ответ:» 0,07 .


Задача 12

Из 1000 ламп ni принадлежат i-й партии, i=1, 2, 3, . В первой партии 6%, во второй 5%, в третьей 4% бракованных ламп. Наудачу выбирается одна лампа. Определить вероятность того, что выбранная лампа — бракованная.

Исходные данные: n1 = 350; n2 = 440.

Решение задачи

Рассмотрим три гипотезы:

Н1 – выбор лампы из первой партии;

Н2 – выбор лампы из второй партии;

Н3 – выбор лампы из третьей партии;

а также событие А – выбор бракованной лампы.

Учитывая то, что Н1, Н2, Н3 – полная группа попарно несовместимых событий, причем Р(Нi) ¹ 0, i = 1,2,3, то для любого события А имеет место равенство (формула полной вероятности):

3
Р(А) =

å P(Hi) x P(A/Hi) .

i=1

Тогда:

P(H1) = 350/1000 = 7/20 ;

P(H2) = 440/1000 = 11/25 ;

P(H3) = 210/1000 = 21/100 .

Р(А) = 7/20 х 0,06 + 11/25 х 0,05 + 21/100 х 0,04 = 42/2000 + 55/2500 + 84/10000 = 514/10000 = 0,0514 .

Ответ: Р(А) = 0,0514 .


Задача 18

На каждый лотерейный билет с вероятностью p1 может выпасть крупный выигрыш, с вероятностью р2. — мелкий выигрыш и с вероятностью р3 билет может оказаться без выигрыша, . Куплено n билетов. Определить вероятность получения n1 крупных выигрышей и n2 мелких.

Исходные данные: n = 14; n1 = 5; n2 = 4;p1 = 0,25; p2 = 0,35.

Решение задачи

Для решения данной задачи используем формулу для полиномиального распределения вероятностей, т.к. события – является ли і-тый билет выигрышным (и насколько) или невыигрышным – независимы (для разных і):

Pn(m1,m2,…,mk) =

n!

p1m1 p2m2 … pkmk .

m1! m2!…mk!

В задаче: А1 – билет оказался с крупным выигрышем;

А2 – билет оказался с мелким выигрышем;

А3 – билет оказался без выигрыша.

Р14(5,4,5) =

14!

х (0,25)5 х (0,35)4 х (0,4)5 =

6х7х8х9х10х11х12х13х14 х
5! 4! 5! 2х3х4х2х3х4х5

х 0,0009765 х 0,015 х 0,01024 = 2 х 7 х 9 х 11 х 13 х 14 х 0,0009765 х 0,015 х

х 0,01024 » 0,0378.

Ответ: Р » 0,0378 .


Задача 19

Вероятность «сбоя» в работе телефонной станции при каждом вызове равна р. Поступило п вызовов. Определить вероятность m «сбоев».

Исходные данные: m = 9; N = 500; p = 0,01.

Решение задачи

q = 1 – p = 1 – 0,01 = 0,99 .

Так как n – большое число (n = N = 500), а npq » 5, т.е. npq < 9 , то применяем формулы Пуассона:

Рn(m) »

am

e-a , a = np .

m!

Подсчет вручную дает следующие результаты:

Рn(m) »

59

х 1 »

58

х 1 »
2х3х4х5х6х7х8х9

е5

2х3х4х6х7х8х9

2,75

» 390625 » 390625 » 0,03751 .
72576 х 143,5 10 413 862

Но, при известных а = 5 и m = 9 результат формулы Пуассона следует брать из таблицы III, где

Рn(m) » 0,03627 .

Ответ: Рn(m) » 0,03627 .


Задача 20

Вероятность наступления некоторого события в каждом из n независимых испытаний равна р. Определить вероятность того, что число т наступлений события удовлетворяет следующему неравенству.

Варианты 22—31:

Исходные данные: n = 100; P = 0,3; k1 = - ; k2 = 40.

Решение задачи

Вероятность Рn(m) того, что в результате этих n опытов событие А произойдет m раз (наступит m успехов), определяется по формуле Бернулли:

Pn(m) = Cnmpmqn-m, m = 0,1,2,…,n (1)

где q = 1 – p – вероятность наступления противоположного события А при единичном испытании.

Совокупность чисел, определяемых формулой (1), называется биномиальным распределением вероятностей.

При больших значениях п (порядка десятков, сотен) для биномиального распределения применяют следующие приближенные формулы:

(2)

где:

(3)

где:


(4)

(5)

(6)

Формула (2) основана на локальной теореме Муавра—Лапласа, (3) — на интегральной теореме Муавра—Лапласа, (5) и (6) — на формуле Пуассона. Асимптотику Муавра—Лапласа [формулы (2) и (3)] рекомендуется применять в случае, когда npq>9. В противном случае более точные результаты дает асимптотика Пуассона [формулы (5) и (6)].

З а м е ч а н и е 1. Приближенная формула (3) остается в силе и в том случае, когда входящие в нее неравенства являются строгими.

З а м е ч а н и е 2. Вычисления по формулам (2), (3), (5), (6) выполняются с использованием таблиц I—IV соответственно (см. приложение).

В данной задаче n = 100, т.е. n – число большое.

npq = 21, следовательно npq > 9.

При этом q = 1 – p = 0,7 ;np = 30 .

Наши рассуждения приводят к тому, что данную задачу следует решать с помощью формул Муавра-Лапласа, а именно с помощью формулы (3).

Тогда:

k2 – np

» 40 – 30 » 10 » 2,18 .
Ö npq 4,58 4,58

k1 – np

» 0 – 30 » -30 » - 6,55 .
Ö npq 4,58 4,58

Pn(m £ k2) » Ф(х2) – Ф(х1) » Ф(2,18) – Ф(- 6,55) » Ф(2,18) + Ф(6,55) »

» 0,48537 + 0,5 » 0,98537 .

Ответ: Pn(m £ 40) » 0,98537 .

Задача 21

Дана плотность распределения р (х) случайной величины x. Найти параметр g, математическое ожидание Мx дисперсию Dx, функцию распределения случайной величины x вероятность выполнения неравенства х1 < x < х2

Варианты 17-24:  

Исходные данные: a = -1,5; b = 1; x1 = -1; x2 = 1.

Решение.

 

Р(х) = í

 g, х Î [-1,5, 1],

 0, x Ï [-1,5, 1].

 

Найдем g. Должно выполняться соотношение:Fx(+¥) = 1;

ò p(x)dx = 1;

 ò gdx = 1;

gx

1 = 1;

g *(1+1,5) = 1;

g =

1

=2/5 .

-1,5 2,5
-1,5
1

 Найдем: Мx =

 ò х 2/5 dx =

2 х2

1 = 1/5 (1-2,25) = -1,25

= -0,25 .

5 2 -1,5 5
-1,5
1

Найдем: Dx = Мx2 – (Мx)2 =

 ò 2/5 x2 dx – 0,0625 = 2/5

x3

1 - 0,0625 =
3 -1,5
-1,5

= 2/5 (1/3 + 3,375/3) – 0,0625 = 0,4 * 1,4583 – 0,0625 = 0,5833 – 0,0625 = 0,5208 .

í 0 , x < -1,5;
x x

Найдем: Fx (x)=

ò p(х) dx =

 ò g dt ,

-1,5 £ x < 1;
-1,5
1 , x ³ 1 .
x x

 

 ò g dt =

g t

=

g x + 1,5g =

2/5x + 0,6 .

 

-1,5 -1,5

 

 

Найдем: P{-1<x<1} = Fx (1) - Fx (-1) = 1 – (-2/5 + 0,6) = 7/5 – 3/5 = 4/5 .

Ответы: 1) g = 2/5; 2) Мx = - 0,25; 3) Dx = 0,5208; 4) Fx (x) = 0,4x + 0,6; 5) P{-1<x<1} = 4/5.






Список использованной литературы

1.   Феллер В. Введение в теорию вероятностей и ее приложения. В 2-х томах. Т.1: Пер.с англ. - М.: Мир, 1994. – 528 с.

2.   Вентцель Е.С. Теория вероятностей: Учеб.для вузов. – 6-е изд.стер. – М.: Высш.шк., 1999. – 576 с.

3.   Сборник задач по теории вероятностей, математической статистике и теории случайных функций. Под редакцией А.А. Свешникова. – М.: Наука, 1998. – 656 с.

4.   Лютикас В.С. Факультативный курс по математике: Теория вероятностей. – М.: Просвещение, 1998. – 160 с.


Информация о работе «Теория вероятностей и математическая статистика»
Раздел: Математика
Количество знаков с пробелами: 10789
Количество таблиц: 25
Количество изображений: 3

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
10566
0
2

... оценками. Например, среднее арифметическое, медиана, мода могут показаться вполне приемлемыми для оценивания математического ожидания М (Х) совокупности. Чтобы решить, какая из статистик в данном множестве наилучшая, необходимо определить некоторые желаемые свойства таких оценок, т.е. указать условия, которым должны удовлетворять оценки. Такими условиями являются: несмещенность, эффективности ...

Скачать
128040
14
4

... выборок. 5. Исследовательские проекты и их защита. 3 2 1 2 2 2 1 1 1 3 2 1 2 2   Всего 10 5 10   Итого 60 34   Глава 2 Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы 2.1. Организация при формировании пространственного образа, c использованием ...

Скачать
138817
24
10

... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1.  Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...

0 комментариев


Наверх