Матрицы. Дифференциальные уравнения

19492
знака
5
таблиц
3
изображения

ВЕКТОРЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

 

Определение. Вектором называется направленный отрезок прямой. Точка  называется началом вектора , а точка  – его концом (рис. 1).

Обозначения: , .

Определение. Длина вектора называется его модулем и обозначается , .

Определение. Координатами вектора  называются координаты его конечной точки. На плоскости Oxy ; в пространстве Oxyz .

Определение. Суммой и разностью векторов  и  являются соответственно векторы

;

;

произведение вектора  на число l есть вектор

.

Определение. Длина вектора равна корню квадратному из суммы квадратов его координат:

 (на плоскости);

 (в пространстве).

Определение. Расстояние d между двумя точками A и B можно рассматривать как длину вектора , т.е.

 (на плоскости);

 (в пространстве).

Определение. Если два вектора  и перпендикулярны, то

 (на плоскости);

 (в пространстве).

Определение Вектор X называется собственным вектором линейного оператора A (матрицы A), если найдется такое число l, что AX=lX.

Число l называется собственным значением оператора A, заданного матрицей A, т.е. собственные значения находятся из характеристического уравнения .


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

 

Определение Обыкновенное дифференциальное уравнение – уравнение, связывающее искомую функцию одной переменной и производные различных порядков данной функции.

Определение Порядок старшей производной – порядок дифференциального уравнения.

Определение Решение дифференциального уравнения – такая функция y=y(x), которая при подстановке ее в это уравнение обращает его в тождество.

Определение Задача нахождения решения дифференциального уравнения называется задачей интегрирования данного дифференциального уравнения.

Определение Общее решение дифференциального уравнения n- го порядка называется такое его решение , которое является функцией переменной x и n постоянных. Частное решение при конкретных значениях .

Определение Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными, если оно может быть представлено в виде

.

Определение Д.у. первого порядка называется однородным, если оно может быть представлено в виде

.

(Для решения используется замена t=y/x)/

Определение Дифференциальное уравнение первого порядка называется линейным, если оно имеет вид

 (линейное неоднородное).

(Сначала решаем уравнение  - линейное однородное, находим y и подставляем в исходное).

Определение Уравнение вида

называется уравнением Бернулли.

(Для решения используется замена ).

Линейные однородное д.у. второго порядка с постоянными коэффициентами Определение Линейные однородные д.у. второго порядка с постоянными коэффициентами имеет вид

=0

(Для решения этого уравнения составляем характеристическое уравнение ).

Теорема 1) Пусть характеристическое уравнение имеет действительные корни l1 и l2, причем . Тогда общее решение уравнения имеет вид

 (С1, С2 – некоторые числа).

2) Если характеристическое уравнение имеет один корень l (кратности 2),то общее решение имеет вид

 (С1, С2 – некоторые числа).

3) Если характеристическое уравнение не имеет действительных корней, то общее решение имеет вид

, где

, С1, С2 – некоторые числа.


НЕОБХОДИМЫЕ ФОРМУЛЫ ДЛЯ РЕШЕНИЯ ЗАДАЧ О КАСАТЕЛЬНОЙ

Общее уравнение прямой:

Ax+By+C=0

Уравнение прямой с угловым коэффициентом:

y=kx+b

(k=tgj коэффициент прямой равен тангенсу угла наклона этой прямой)

Если две прямые y=k1x+b1 и y=k2+b2 параллельны, то k1=k2.

Если две прямые y=k1x+b1 и y=k2+b2 перпендикулярны, то k1*k2=-1.

Уравнение прямой, проходящей через данную точку в данном направлении(известен коэффициент k):

Пусть прямая проходит через точку M1(x1;y1) и образует с осью Ox угол

y-y1=k(x-x1)

Уравнение прямой, проходящей через две данные точки M1(x1;y1) и M2(x2;y2):

Уравнение касательной к кривой y=f(x) в точке x0 примет вид

y-f(x0)=f¢(x0)(x-x0)

Геометрический смысл производной:

f¢(x0)=k=tga

(производная f¢(x0) есть угловой коэффициент(тангенс угла наклона) касательной, проведенной к кривой y=f(x) в точке x0)


МАТРИЦЫ

 

Определение: Матрицей размера mn называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрица размера mn:

.

 

Виды матриц

Определение: Матрица, состоящая из одной строки, называется матрицей (вектором)-строкой, а из одного столбца – матрицей (вектором)- столбцом.

Пример:

; .

Определение: Матрица называется квадратной n-го порядка, если число ее строк равно числу столбцов и равно n.

Пример:

- квадратная матрица третьего порядка.

Определение: Элементы матрицы aij, у которых номер столбца равен номеру строки (i=j), называются диагональными и образуют главную диагональ матрицы.

Определение: Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной.

Пример:

- диагональная матрица третьего порядка.

Определение: Если у диагональной матрицы n-го порядка все диагональные элементы равны единице, то матрица называется единичной матрицей n-го порядка, она обозначается буквой E.

Пример:

 - единичная матрица второго порядка;

- единичная матрица третьего порядка.

Определение: Матрица любого размера называется нулевой, если все элементы равны нулю.

Операции над матрицами

1.                Умножение матрицы на число

Каждый элемент матрицы умножается на это число.

Пример:

, 0,5.


2.                Сложение матриц

!!! Можно складывать матрицы только одинаковых размеров.

Матрицы складываются поэлементно.

Пример:

.

3.                Вычитание матриц

!!! Можно вычитать матрицы только одинаковых размеров.

Матрицы вычитаются поэлементно.

Пример:

.

4.                Умножение матриц

!!! Матрицу А можно умножить на матрицу В, если число столбцов матрицы А равно числу строк матрицы В.

Произведением матрицы  называется такая матрица , каждый элемент которой cij равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-го столбца матрицы В.


Информация о работе «Матрицы. Дифференциальные уравнения»
Раздел: Математика
Количество знаков с пробелами: 19492
Количество таблиц: 5
Количество изображений: 3

Похожие работы

Скачать
38497
0
12

... в момент t, образует пространство выхода системы. Множество всех значений, которые может принять вектор состояния x в момент t, образует пространство состояний системы. 3.3. Описание непрерывных систем с помощью системы дифференциальных уравнений В любой момент времени t состояние системы является функцией начального состояния x(t0) и вектора входа m(t0, t), то есть x(t)=F[x(t0); m(t0; t)], ...

Скачать
8216
0
0

... популяции обязательно вырождаются, причем независимо от начального распределения особей по возрасту. В завершение рассмотрим пример. Одной из классических моделей динамики популяций является так называемая логистическая модель или модель Ферхюльста, которая описывается дифференциальным уравнением с начальным условием , где , см., например, [5, c. 14]. Если учитывать ограниченность времени жизни ...

Скачать
53746
0
28

... с единицами измерений физических величин в системе MathCAD? 11.    Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...

Скачать
48103
0
18

... начальным условиям  . Пусть  — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где . 2. Устойчивость решений систем дифференциальных уравнений. 2.1. Устойчивость по Ляпунову. Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует ...

0 комментариев


Наверх