3. Радиотелеметрические измерения

Радиотелеметрические измерения являются основным источником информации о работе бортовых систем, приборов и агрегатов летательного аппарата, медико-биологическом состоянии экипажа и состоянии окружающей среды.

Большая сложность и стоимость современных ракет и КА обусловили повышенные требования к количеству контролируемых параметров, точности измерений, дальности приема, что привело к существенному усложнению радиотелеметрических систем (РТС).

В настоящее время РТС представляют собой сложный информационно-измерительный комплекс, включающий бортовую и наземные подсистемы, каналы связи, а также специализированные или универсальные ЭВМ, предназначенные для обработки результатов; измерений. Как видно из рисунка 5., радиотелеметрическая система состоит из бортовой измерительно-передающей и наземной приемно-регистрирующей аппаратуры.

При радиотелеметрических измерениях каждая из n измеряемых физических величин через какой-то элемент связи поступает на датчик, представляющий собой информационное устройство, преобразующее контролируемую физическую величину в электрический сигнал, удобный для дальнейшей обработки и передачи по радиолинии. Однотипные электрические сигналы с датчиков поступают на суммирующее и кодирующее устройства, в которых производится объединение сигналов всех датчиков общий суммарный сигнал. При этом сигнал каждого датчика наделяется характерным ему признаком, позволяющим выделить этот сигнал в наземном регистрирующем устройстве. Суммарный сигнал поступает на передающее устройство и излучается в заданном направлении. Излучаемый с борта летательного аппарата сигнал принимается и регистрируется наземной станцией. Принятый антенной наземной станции сигнал передается в приемное устройство, на выходе которого выделяется суммарный сигнал всех датчиков, подобный сигналу на выходе схемы объединения каналов. Этот сигнал поступает на индикаторное устройство, а затем в разделитель каналов, где по характерным для каждого сообщения признакам разбивается на параллельный поток каналов.


С целью последующей обработки и документирования сообщений вся полученная информация записывается на различных видах носителей или передается на централизованный пункт автоматической обработки измерений.

Используемые при испытаниях и эксплуатации ракет и космических аппаратов РТС можно классифицировать по следующим основным признакам.

1. По назначению:

для испытаний и летно-конструкторской отработки новых образцов ракет и КА;

для оперативного контроля и управления полетом ракет и КА в условиях их нормальной эксплуатации.

2. По виду представления телеметрируемых сигналов:

аналоговые;

дискретно-аналоговые;

дискретно-цифровые.

3. По способу разделения каналов:

с временным разделением каналов (ВРК);

с частотным разделением каналов (ЧРК);

с кодовым разделением каналов (КРК);

с комбинированным разделением каналов.

4. По цикличности формирования выборок сигналов с датчиков:

циклические,

ациклические.

5. По виду модуляции первичных сигналов:

амплитудно-импульсная модуляция (АИМ);

широтно-импульсная модуляция (ШИМ);

фазово-импульсная модуляция (ФИМ);

амплитудная модуляция (AM);

фазовая модуляция (ФМ);

частотно-импульсная модуляция (ЧИМ).

6. По виду модуляции несущих колебаний:

амплитудная модуляция (AM);

частотная модуляция (ЧМ);

фазовая модуляция (ФМ).

Под модуляцией в общем случае можно понимать изменение по времени по какому-то определенному закону, какого-то параметра или характеристики сигнала или процесса.

В электротехнике и радиотехнике, которые имеют дело с различным видами электрических сигналов, сложилась вполне определенная терминология, описывающая характер изменения во времени основного сигнала называемого несущей:

постоянный сигнал Z(t)=Xm;

гармонический сигнал Z(t)=Xm·cos (ω0t+φ).

Периодическая последовательность импульсов характеризуемая их амплитудой Xm, длительностью τm, периодом повторения Тm.

Первый из этих сигналов характеризуется только одним параметром – амплитудой, который в данном случае только и можно изменять.

Второй характеризуется тремя параметрами: амплитудой, фазой и частотой (или периодом). То же самое касается и третьего вида сигнала. Именно эти параметры и представляют широкие возможности для управления ими. Особенно это касается импульсной несущей, где можно менять: амплитуду импульсов, их фазу, частоту повторения, длительность импульсов и пауз, число импульсов в пакете и комбинацию импульсов и пауз, что собственно и представляет собой код. В соответствии с видом основного сигнала различают следующие виды его модуляции:

ПМ – прямая модуляция, изменяющая единственный параметр постоянного сигнала;

АМ – амплитудная модуляция;

ЧМ – частотная модуляция;

ФМ – фазовая модуляция, для гармонического сигнала обозначающая воздействие на его соответствующий параметр;

АИМ – амплитудно-импульсная модуляция;

ЧИМ – частотно-импульсная модуляция;

ВИМ – время импульсная модуляция;

ШИМ – широтно-импульсная модуляция;

ФИМ – фазоимпульсная модуляция;

СИМ – счетно-импульсная модуляция;

КИМ – кодоимпульсная модуляция.

Они также обеспечиваются воздействием на соответствующий параметр периодической последовательности импульсов, которая является несущей.

На рисунке 6. приведены сигналы, различающиеся видами модуляции для случая равномерного возрастания значения отображаемой величины X(t). Как видно, счетно-импульсная (СИМ) и кодоимпульсная (КИМ) модуляции связаны с квантованием по уровню значений непрерывной величины X. АИМ, ВИМ, ФИМ и ШИМ приводят к дискретности отсчетов во времени. Другие виды модуляции сохраняют непрерывную структуру информации.

Амплитудно-импульсная модуляция имеет две разновидности:

АИМ – 1, при которой амплитуда в пределах одного импульса повторяет форму модулирующего сигнала (рисунок 7.а);

АИМ – 2, при которой амплитуда в пределах одного импульса не изменяется и равна значению модулирующего сигнала в момент, соответствующий началу импульса (рисунок 7.б).

В рассмотренных выше примерах, огибающая представляет собой монотонно возрастающую непрерывную функцию. В случае воздействия модулирующего сигнала описываемого более сложной функцией, естественно усложняется и вид результирующей характеристики управляемого процесса. Иногда так, что графически этот процесс достаточно сложно изобразить. Тогда на помощь приходит математика т. к. описать математически можно практически любой процесс управления или модуляции.

Кодирование (от французского сode – свод правил, код, шифр) – операция отождествления символов или групп символов одного кода (например, условная система знаков для представления информации в ЭВМ) с символами или группами символов другого кода. Необходимость кодирования возникает, прежде всего, из потребности адаптировать форму сообщения к конкретному каналу связи или какому-либо другому устройству, предназначенному для преобразования или хранения информации. Закон, по которому осуществляется это преобразование, называется кодом. Если код связывает бесконечные во времени последовательности, то он называется непрерывным; если код связывает последовательности только на длине некоторого блока, то он называется блочным.

Кодирование используется:

для исключения ошибок, возникающих при передаче, обработке или хранении информации (в т. ч. для исправления ошибок),

уменьшения избыточности информации (т. н. «информационное сжатие»),

засекречивания передаваемой информации,

преобразования алфавита кода и т.д.

Коды, исправляющие ошибки, при применении их в спутниковых и космических системах связи, позволяют:

понижать выходную вероятность ошибки,

уменьшать размеры приёмных и передающих антенн,

понижать мощность передатчика,

повышать пропускную способность системы.

В целом положительный эффект от их применения оценивается энергетическим выигрышем за счёт кодирования. «Сжатие» информации также позволяет повышать пропускную способность линии связи. При использовании кодирования в процессе приёма возникает необходимость в выделения из получаемого сигнала исходной информации. Это достигается при помощи декодирования, которое можно осуществлять как операцию, обратную кодированию, так и операцию, исключающую действие канала на информацию. Устройство, производящее операции кодирования и декодирования, называется кодеком.

7. По точности измерения телеметрируемых величин:

высокоточные (погрешность измерения 1%);

низкоточные (погрешность измерения 1%).

8. По эффективности:

малой,

средней,

большой.

Под эффективностью W понимается произведение числа каналов n на среднюю максимальную частоту спектра сообщения, т.е.

где Fi, max – максимальная частота спектра сообщения i-гo измерения.

Системы малой эффективности (W = 300…600) используются для передачи небольшого числа (n = 30…40) медленно изменяющихся сообщений со средней максимальной частотой, не превышающей Fmax = 10…15Гц. В этом случае обычно используются системы с временным разделением каналов.

Системы средней эффективности (W = 9000) обычно используют частотные методы разделения каналов и предназначаются для передачи малого числа широкополосных каналов (n =15…18, Fmax = 300… 500Гц).

Системы большой эффективности (W = 200000…300000) предназначаются для передачи количества сообщений, приблизительно 200, с широким спектром Fmax = 500…1000Гц. Для разделения каналов здесь применяют главным образом комбинированные методы.

Получившие широкое распространение системы с ВРК классифицируют по пропускной способности (информативности). Под информативностью понимается либо количество замеров в секунду J1 = nFo, либо количество двоичных единиц в секунду J2 = F0nN, где N – среднее количество двоичных разрядов на одно измерение. Число N связано с точностью δ соотношением N = – [log δ], здесь δ измеряется в долях единицы, а знак выражения в квадратных скобках обозначает округление до ближайшего сверху целого числа. Например, если δ = 3% = 0,03 (N = 5), n = 100, Fo = 100, то информативность J2 = 50000 дв. ед/с.

Выбор типа и принципов построения РТС зависит от ее назначения и требуемой точности измерения телеметрируемых параметров. При испытаниях новых образцов ЛА телеметрические комплексы должны обеспечивать регистрацию с высокой точностью (до 0,1%) большого количества параметров, характеризующих функционирование многих систем, узлов и агрегатов ЛА. Так, например, при испытаниях ракетно-космической системы, предназначенной для доставки пилотируемого КА на Луну с последующим возвращением на Землю, потребовалось одновременные измерения до полутора – двух тысяч параметров с частотой измерения до 1000 Гц.


Информация о работе «Измерения при эксплуатации объектов ракетно-космической техники»
Раздел: Физика
Количество знаков с пробелами: 18451
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
39066
1
0

... -1" успешно использовались системы управления, изготовленные на Киевском радиозаводе. Через 10-12 лет после освоения первых счетно-решающих приборов на смену им в ракетную технику пришли бортовые ЭВМ на интегральных схемах. Первая серийная бортовая машина на интегральных микросхемах для ракетного комплекса 15А14 вышла с ПО "Киевский радиозавод" в 1973 году. Это было время, когда страна осваивала ...

Скачать
45608
0
0

... для перевода управления различными отраслями промышленности и народного хозяйства в целом на программные методы с широчайшим использованием электронной вычислительной техники. Большой вклад внесли космические исследования в здравоохранение и медицину. Полеты в космос впервые по-новому поставили вопрос изучения организма человека, его работоспособности в различных условиях, определения его места ...

Скачать
45265
1
0

... относительно независимо. После реорганизации системы управления оборонно-промышленного комплекса в 1999 г. был сделан первый шаг к объединению авиационной и ракетно-космической отраслей (Российское авиационно-космическое агентство) в авиационно-ракетно-космический научно-промышленный комплекс экономики. Следует отметить, что организационные и финансовые задачи в этом процессе не единственно ...

Скачать
35599
0
0

... 400,000 будет выплачено ОСАО "Ингосстрах", ОАО "Восточно-Европейское Страховое Агентство" и ОАО "Военно-Страховая Компания" в долях соответствующих договору до 1 марта 2000 года. Основные объекты и виды космического страхования Страхование космической деятельности включает практически все виды страхования и, по мнению страховщиков, должно осуществляться на всех этапах жизненного цикла ракетно- ...

0 комментариев


Наверх