Войти на сайт

или
Регистрация

Навигация


Скачать работу на тему: Численное интегрирование функций

Раздел: Математика
Количество знаков с пробелами: 7913
Количество таблиц: 0
Тип файла: документ Word (.docx)
Размер файла: 49.97 КБ

Количество изображений: 3, показано 3

Вся база рефератов, курсовых, дипломных работ и прочих учебных материалов предоставляется бесплатно. Используя материалы сайта Вы подтверждаете, что ознакомились с пользовательским соглашением и согласны со всеми его пунктами в полной мере.

Похожие работы

Скачать
23991
0
2

... . Также мы получим графическое отображение процесса интегрирования на участках возрастания и убывания функции.   2. Выбор математической модели задачи Кратко рассмотрим основные методы численного интегрирования и выясним почему метод Гаусса наиболее подходит для решения нашей задачи.   2.1 Метод прямоугольников Метод прямоугольников получается при замене подынтегральной функции на ...

Скачать
15209
0
6

... - 0.588. 2. Математические и алгоритмические основы решения задачи Кратко рассмотрим основные методы численного интегрирования и выясним, почему самый лучший и быстрый метод интегрирования - десятиточечный метод Гаусса.   2.1 Метод прямоугольников Метод прямоугольников получается при замене подынтегральной функции на константу. В качестве константы можно взять значение функции в любой ...

Скачать
39882
6
11

... и методика испытаний   5.1 Объект испытаний Объектом испытаний является программа, предназначенная для исследования внутренней сходимости численного интегрирования с помощью методов вычисления интегралов: методы трапеций и Симпсона.   5.2 Цель испытаний Целью испытаний является проверка точности работы программы для данной задачи.   5.3 Требования к программе Во время испытаний ...

Скачать
9976
1
0

... производной: diff (f (х) , х$3). Пример 1. Вычисление производных. > s:=x^3*cos(x)+y^2*ln(sin(x)); > diff(s,x); > diff(s,x$2); > diff(s,x,y); > fs:=Diff(s,x); > q:=sqrt(fs); > value(%); Последние три команды показывают использование отложенной формы команды дифференцирования. 2. Интегрирование выражений Команда int( ) имеет отложенную форму ...

0 комментариев


Наверх