Войти на сайт

или
Регистрация

Навигация


Скачать работу на тему: Обратимые матрицы над кольцом целых чисел

Раздел: Математика
Количество знаков с пробелами: 25275
Количество таблиц: 6
Тип файла: документ Word (.docx)
Размер файла: 120.40 КБ

Количество изображений: 4, показано 4

Вся база рефератов, курсовых, дипломных работ и прочих учебных материалов предоставляется бесплатно. Используя материалы сайта Вы подтверждаете, что ознакомились с пользовательским соглашением и согласны со всеми его пунктами в полной мере.

Похожие работы

Скачать
50071
3
0

... гомоморфизм . K= - подгруппа Z и значит K=mZ для некоторого целого m. Отсюда следует, что H= . При этом и потому n=dm где d - целое. По теореме о гомоморфизме . Из доказанных теорем следует, что всякая подгруппа циклической группы циклична. Мы видим также, что для каждого целого d, делящего порядок n конечной циклической группы имеется и притом ровно одна подгруппа порядка d, то есть для ...

Скачать
15005
0
0

... но они не равны друг другу. Так будет, например, для подкольца , состоящего из матриц с нулевой последней строкой и последним столбцом; =diag(1,1,...,1,0) =diag(1,1,...,1). Определение. Гомоморфизмом колец называется отображение, сохраняющее обе кольцевые операции: и . Изоморфизм - это взаимно однозначный гомоморфизм. Ядро гомоморфизма - это ядро группового гомоморфизма аддитивных групп , то ...

Скачать
7592
0
0

... -x * y. Полем называется такое ассоциативное коммутативное кольцо с единицей k, в котором всякий ненулевой элемент обратим: . Таким образом, по определению в поле отсутствуют делители нуля. Кольцом называется множество с двумя алгебраическими операциями R (+, *), если:   0. Обратимыми называют те элементы кольца R, которые имеют обратные относительно операции умножения, множество R в данном случае ...

Скачать
38950
13
4

...   a  =  bq1  + r1 ,   b = r1 q2  + r2 ,   r1  = r2 q3  + r3 ,   . . . . . . . . . . . . .   rn-2  = rn-1qn-1+ rn . Докажем, что каждое из чисел rk линейно выражается через a и b с целыми коэффициентами. Для r1 утверждение тривиально: r1 = a - bq1 . Считая, что каждое из чисел r1 , r2 , . . . , rn-1 является целочисленной линейной комбинацией чисел a ...

0 комментариев


Наверх